Characterization of the Geographic Patterns of Fuel Consumption and Emissions of Freight Vehicles in the Albany-New York City Corridor

Sofia Perez-Guzman,

Ph.D. Candidate

Department of Civil and Environmental Engineering Rensselaer Polytechnic Institute perezs@rpi.edu

INUF 2022 Long Beach, CA, May 25th

Acknowledgments

Jose Holguin-Veras,

William H. Hart Professor

Director of the Center for Infrastructure, Transportation, and the Environment, and the VREF Center of Excellence for Sustainable Urban Freight Systems Rensselaer Polytechnic Institute jhv@rpi.edu

Julia Coutinho Amaral,

Ph.D. Student

Department of Civil and Environmental Engineering Rensselaer Polytechnic Institute coutij@rpi.edu

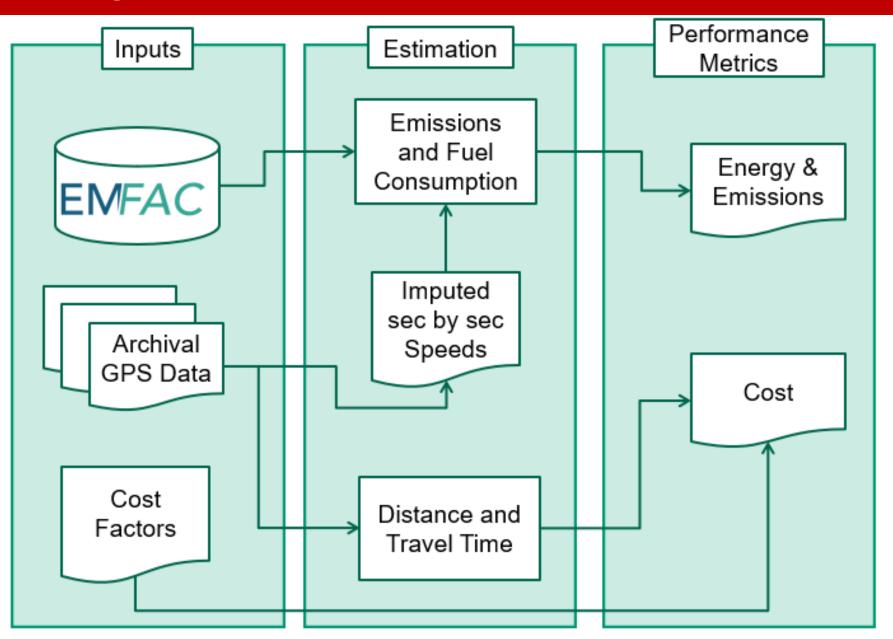
Carlos Rivera Gonzalez,

Ph.D. Graduate

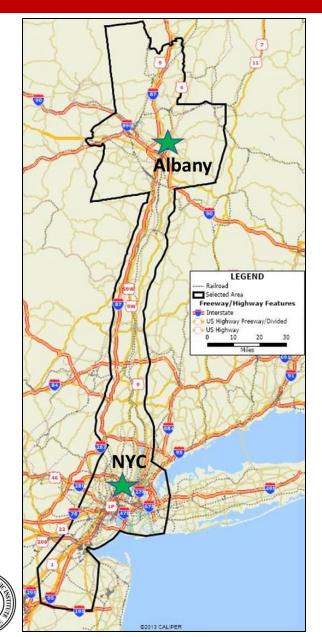
Department of Civil and Environmental Engineering Rensselaer Polytechnic Institute riverc8@rpi.edu

Objectives

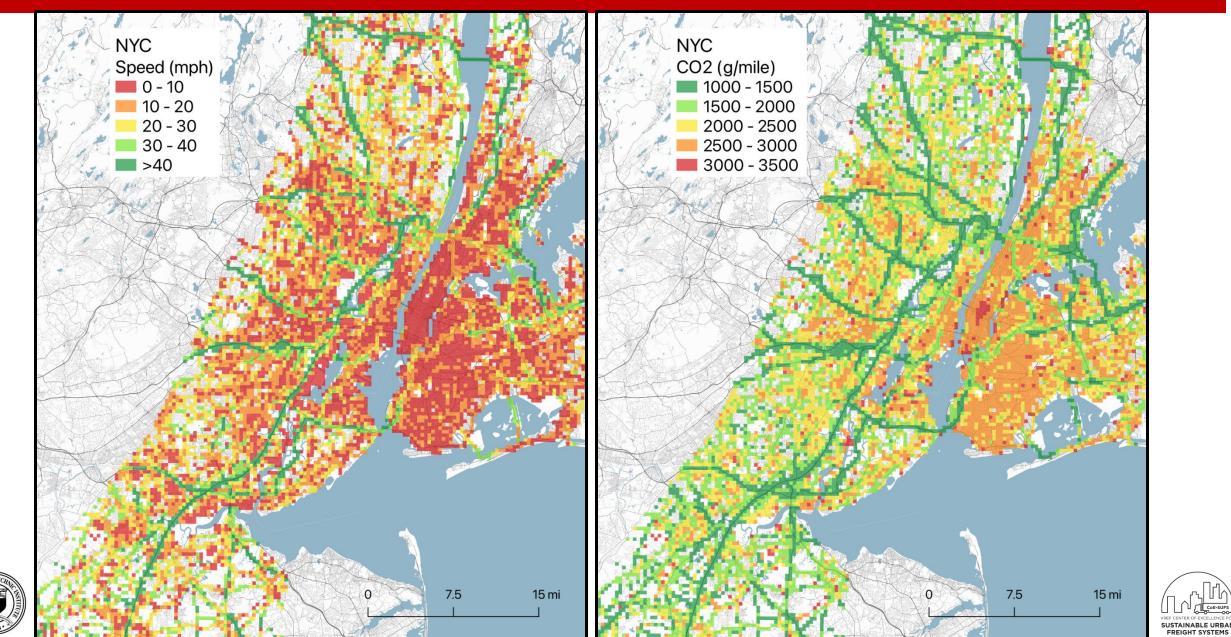
- Use archival GPS data to characterize current patterns of fuel consumption and emissions produced by freight vehicles in the Albany MSA, New York City MSA, and the corridor in-between
- Provide policymakers with a comprehensive geographical analysis of emissions and fuel consumption patterns that could help them identify initiatives to enhance freight transportation efficiency
- Identify opportunities to improve the energy efficiency of freight transportation and reduce the emission of greenhouse gases


Overview of GPS Data

- GPS data from ATRI
 - 105 million points, 116,042 vehicles
 - Three different time periods:
 - July 16-27 (2018)
 - October 22-Nov 2 (2018)
 - June 3-14 (2019)
- Challenges:
 - Polling interval ranges 1-5 minutes (one second or lower is desired)
 - The team developed imputation techniques to obtain second-by-second speeds using the 1Hz GPS data collected by the team

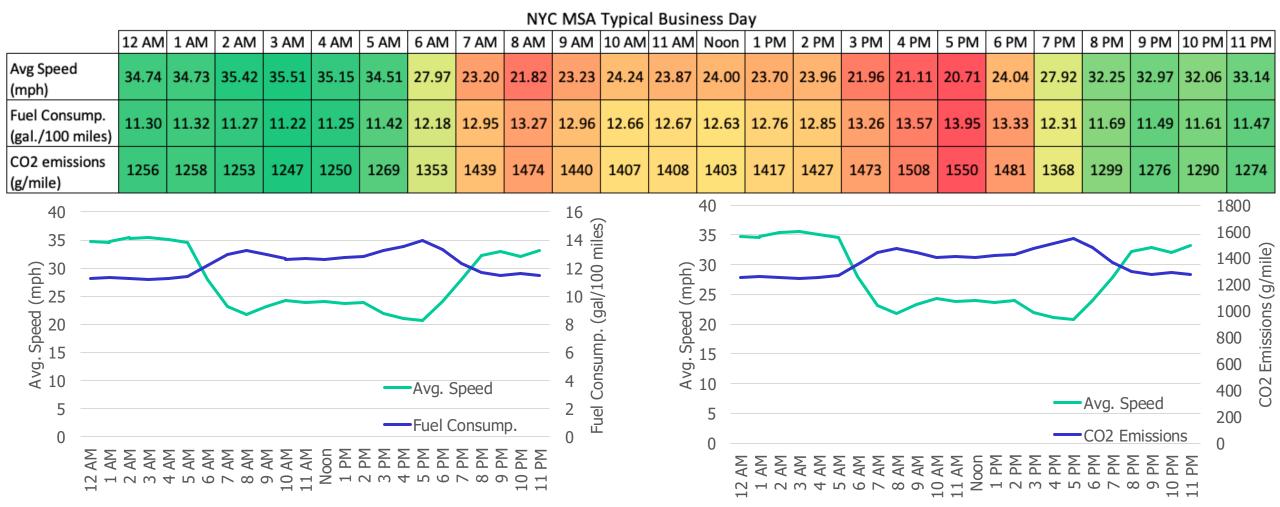

Data Processing

Aggregate Metrics of Emissions and Fuel Consumption


ical Areas	Albany	NYC			
Points	128,011,520	843,016,100			
eed (mph)	40.38	40.38 46.66 25			
sumption .00 miles)	11.15	11.03	12.50		
СО	0.14	0.13	0.25		
CO ₂	1238.68	1225.20	1389.30		
NOx	1.24	1.17	1.89		
PM10	0.0131	0.0136	0.0099		
PM _{2.5}	0.0137	0.0142	0.0104		
ROG	0.0149	0.0146	0.0194		
TOG	0.0169	0.0166	0.0221		
	Points beed (mph) sumption .00 miles) CO CO2 NOx PM10 PM2.5 ROG	Points 128,011,520 beed (mph) 40.38 sumption 11.15 OO miles) 0.14 CO2 1238.68 NOx 1.24 PM10 0.0131 PM2.5 0.0149 ROG 0.0149	Points 128,011,520 184,614,494 beed (mph) 40.38 46.66 sumption 11.15 11.03 CO 0.14 0.13 CO2 1238.68 1225.20 NOx 1.24 1.17 PM10 0.0131 0.0136 PM2.5 0.0137 0.0142 ROG 0.0149 0.0146	Points 128,011,520 184,614,494 843,016,100 beed (mph) 40.38 46.66 25.64 sumption 11.15 11.03 12.50 CO 0.14 0.13 0.25 CO2 1238.68 1225.20 1389.30 NOx 1.24 1.17 1.89 PM10 0.0131 0.0136 0.0099 PM2.5 0.0149 0.0146 0.0194	

Results obtained using all datasets (Jul/2018, Oct/2018, Jun/2019)

The corridor is the best in terms of fuel consumption and emissions, Albany comes in second, and NYC is the worst.

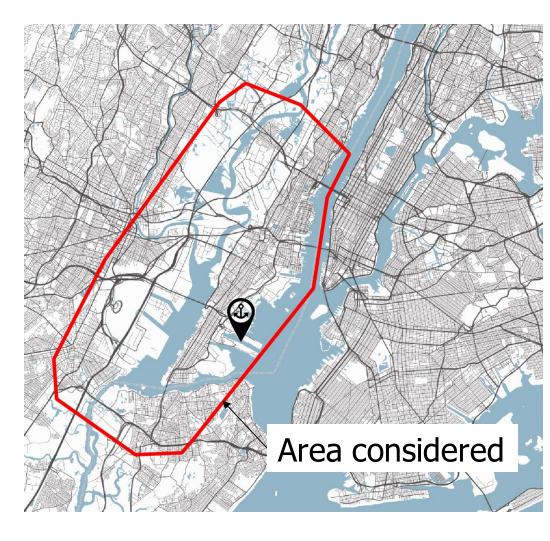


Example of Rasters (July/2018)

Aggregate Metrics Including a Temporal Dimension

- Data points are aggregate based on the location and the time stamp
- Sample results for every hour of a typical business day in the NYC MSA
 - Computed from data on Tuesdays, Wednesdays and Thursdays from the July/2018 dataset

PANYNJ Preliminary Results



Port Authority of New York and New Jersey (Preliminary Results)¹⁷

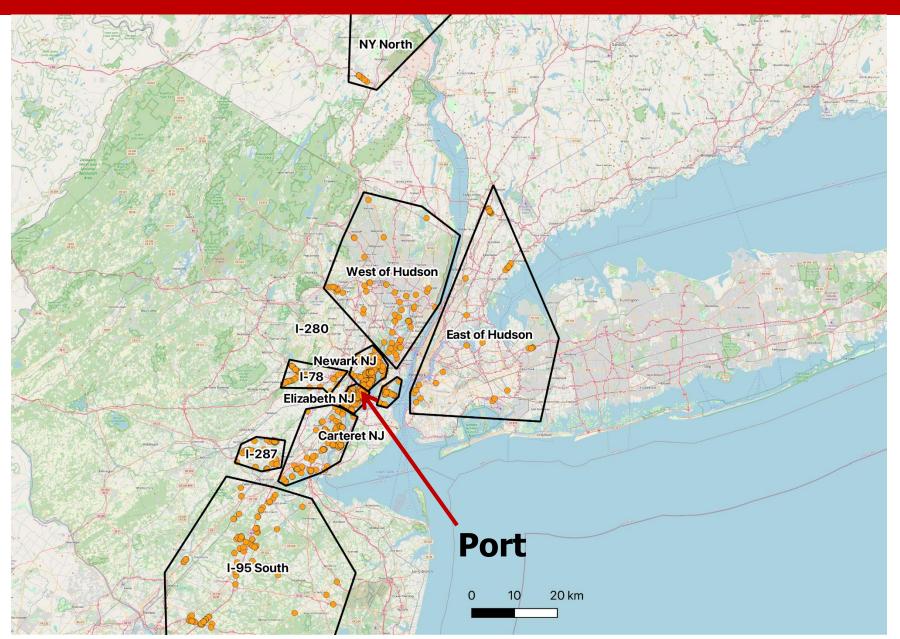
- Objective: investigate the impacts of extending/shifting port work hours to reduce emissions and fuel consumption
- Three periods were considered based on the working hours of the port

1) 3am-6am 2) 6am-6pm 3) 6pm-9pm 3h before ← Current working hours → 3h after

Port of Newark: Emissions and Fuel Consumption Rates

		3h before ◀	Current working hours	3h after
	Periods of the day	3am-6am	6am-6pm	6pm-9pm
A change of hours increases	Avg. Speed (mph)	25.95	18.57	22.71
speed by 22% to 39%	Fuel Consumption (gal. / 100 miles)	11.95	13.58	13.06
	CO (g / mile)	0.21	0.32	0.28
A change of hours reduce CO2	CO2 (g / mile)	1327.33	1508.42	1450.80
emissions by 13% to 33%	NOX (g / mile)	1.65	2.40	2.17
	PM2.5 (g / mile)	0.0106	0.0078	0.0084
A change of hours reduce NOX	PM10 (g / mile)	0.0110	0.0082	0.0088
emissions by 9% to 31%	ROG (g / mile)	0.0174	0.0228	0.0207
OULVIE CHIL	TOG (g / mile)	0.0198	0.0260	0.0236
	Describe sheets and street			/ [

Results obtained using the Jul/2018 dataset


Analysis by Origin of The Trips

- Investigated the effects of the arrival time at the port depending on the origin of the trip
- Aggregated the trips going to the port according to the time of arrival (one-hour intervals)
- Computed metrics:
 - Avg. Speed (mph)
 - CO₂ emission rate (g/mile)
 - Cost per mile travelled (US\$/mile)

Origin Locations Considered

Statistics

Location	Elizabeth NJ	Newark NJ	Bayonne	Carteret NJ	I-280	West of Hudson	I-287	East of Hudson	I-7	78	I-95 South	NY North
Number of Trips	2020	1490	69	477	15	71	72	40	20	9	232	20
Avg. Distance (mi)	3.04	6.28	18.73	14.28	21.49	21.75	26.87	40.02	14.	96	42.37	66.25
Avg. Speed (mph)	5.86	9.43	12.20	14.60	18.49	20.58	21.96	25.76	26.	56	36.03	37.01
Fuel (gal./100 miles)	19.85	16.78	15.41	14.46	13.08	12.76	13.14	12.41	12.	37	11.55	11.16
CO (g/mile)	0.76	0.54	0.44	0.38	0.28	0.27	0.28	0.25	0.2	23	0.17	0.15
CO ₂ (g/mile)	2205.11	1864.80	1711.97	1606.98	1453.74	1417.43	1459.92	1378.95	1374	1.20	1283.36	1239.81
NOx (g/mile)	4.99	3.72	3.22	2.79	2.22	2.07	2.18	1.92	1.8	33	1.42	1.30
PM ₁₀ (g/mile)	0.0054	0.0068	0.0057	0.0071	0.0076	0.0080	0.0091	0.0083	0.01	.04	0.0128	0.0115
PM _{2.5} (g/mile)	0.0057	0 0071	0.0060	0 0075	0 0070	0 0083	0 0005	0 0086		08	0.0134	0.0120
ROG (g/mile)	0.04 L	-	rips pro				-		er	86	0.0161	0.0146
TOG (g/mile)	0.05	UTIPS 0.0550	produc					Dasis	0.02	12	0.0184	0.0166
Cost (US\$/mile)	8.35	5.41	4.32	3.71	3.06	2.81	2.67	2.37	2.3	32	1.87	1.83

Decreasing cost, emissions, and fuel consumption per mile, increasing distance

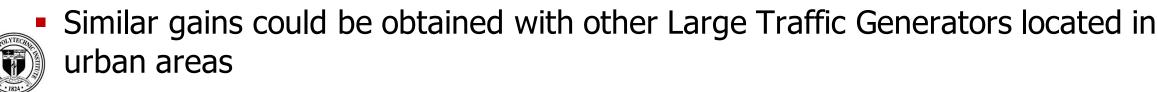
Analysis by Origin and Time of Arrival at the Port: Speed (mph)

	Arrival Time	Elizabeth	Newark	Bayanna	Carteret	I-280	West of	1-287	East of	I-78	I-95	NY North	Average
	at the Port	NJ	NJ	Bayonne	NJ	1-280	Hudson	1-287	Hudson	1-78	South	INT NORTH	Average
	Midnight		13.03		34.26					19.18	56.25		24.05
	1AM		10.69						44.73	45.05			29.45
	2AM	7.36	14.24		26.14			27.14	37.83	45.72	66.75		29.14
	3AM		9.92		34.23		42.49			25.89	62.36		24.34
	4AM		7.31		29.35					32.53	42.27	32.21	22.03
	5AM	1.33	8.35		17.43				50.50	31.84	45.88		13.06
Γ	6AM	4.37	7.46		13.95		12.72			31.53	41.70		11.76
	7AM	4.12	8.95	13.69	12.74	33.90	22.58	28.77	22.15	27.01	46.48		10.67
	8AM	3.79	10.79	8.54	11.36		21.76	23.38	20.27	28.51	37.67	46.38	11.86
	9AM	4.56	12.01	10.24	15.89		18.75	24.54	27.54	26.13	37.41	51.67	14.65
	10AM	6.28	9.28	11.16	13.93	23.84	22.68	24.52	23.12	25.11	34.59	41.60	14.78
J	11AM	7.25	9.29	15.01	13.34	17.68	24.27	21.48	37.49	23.22	37.84	32.82	13.85
	Noon	5.50	9.58	15.22	14.44		26.72	19.74	39.33	27.58	30.31	39.68	12.68
	1PM	6.05	11.66	12.72	16.62	22.29	22.56	18.35	26.50	26.26	36.93	26.39	13.04
	2PM	6.61	8.98	11.40	17.41		22.89	22.51	20.58	26.32	31.92	40.11	13.54
	3PM	6.27	8.03	13.82	18.04	15.42	13.04	24.95	22.94	29.78	28.83	41.46	11.63
	4PM	5.73	5.59	10.05	14.74	16.85	16.33	18.51		24.32	32.72		11.40
	5PM	5.79	8.55	10.43	15.79	17.18		19.34	15.96	21.60	46.83		12.04
	6PM	5.09	5.80		17.93		11.59		22.87	13.87	42.60		9.54
	7PM	4.84	8.09		22.98					25.26	47.35		15.58
	8PM	4.19	10.59		19.74					46.51	50.95		15.02
	9PM		18.75		26.50	19.30	28.10		31.13	39.46	44.74		29.89
	10PM		7.35		19.37	15.36		29.48	28.76	38.99	58.91		23.89
	11PM	22.89	12.29								58.07		38.97
	Average	5.86	9.43	12.20	14.60	18.49	20.58	21.96	25.76	26.56	36.03	37.01	13.19

VREF CENTER OF EXCELLENCE FOR SUSTAINABLE URBAN FREIGHT SYSTEMS

24

Analysis by Origin and Time of Arrival at the Port: CO₂ (g/mile)


	Arrival Time	Elizabeth	Newark	Bayanna	Carteret	I-280	West of	I-287	East of	I-78	I-95	NY North	Average
	at the Port	NJ	NJ	Bayonne	NJ	1-280	Hudson	1-287	Hudson	1-78	South	NY NORTH	Average
	Midnight		1768.71		1281.10					1352.78	1200.45		1369.35
	1AM		1571.50						1170.94	1281.05			1296.33
	2AM	1966.79	1733.68		1303.58			1274.31	1179.47	1186.71	1224.44		1312.73
	3AM		1795.74		1237.17		1407.22			1321.10	1185.70		1361.75
	4AM		2031.27		1256.49					1492.91	1258.95	1295.08	1401.01
	5AM	3206.20	1828.91		1495.91				1170.65	1329.19	1208.99		1565.48
Γ	6AM	2566.11	2114.11		1609.69		1446.74			1310.38	1245.60		1712.17
	7AM	2633.69	1958.25	1983.99	1666.43	1281.26	1364.01	1409.22	1345.22	1312.70	1232.38		1788.47
	8AM	2681.14	1819.58	1903.68	1830.97		1419.80	1399.96	1444.08	1315.69	1261.60	1239.73	1714.09
	9AM	2504.60	1678.67	1884.31	1570.24		1491.21	1424.10	1362.28	1396.62	1275.86	1185.50	1570.33
	10AM	2223.60	1844.49	1770.39	1665.71	1531.71	1406.20	1377.71	1424.18	1486.08	1289.30	1201.33	1583.21
J	11AM	2032.06	1920.30	1504.51	1627.08	1403.66	1344.27	1509.20	1256.07	1377.44	1284.53	1223.82	1600.51
	Noon	2292.25	1894.51	1606.13	1723.40		1327.55	1499.37	1227.97	1338.26	1338.23	1245.40	1672.28
	1PM	2207.29	1736.84	1884.83	1535.69	1407.78	1354.87	1472.91	1414.24	1367.87	1284.08	1298.53	1635.27
	2PM	2059.23	1807.40	1714.79	1514.69		1408.53	1396.69	1439.04	1370.08	1294.25	1246.92	1580.57
	3PM	2128.43	2021.72	1639.64	1524.55	1401.43	1525.04	1435.18	1451.91	1395.78	1330.34	1255.00	1692.51
	4PM	2144.77	2249.30	1888.96	1574.78	1683.81	1783.69	1709.47		1417.26	1291.09		1679.31
L	5PM	2222.67	1838.62	1731.49	1443.82	1512.61		1449.92	1681.26	1464.64	1204.76		1644.56
	6PM	2273.08	2255.26		1442.77		1684.42		1496.97	1770.83	1347.05		1805.10
	7PM	2514.01	1858.75		1370.28					1380.41	1208.41		1504.27
	8PM	2518.61	1684.18		1271.49					1301.13	1303.61		1525.17
	9PM		1507.45		1336.19	1337.00	1262.32		1322.75	1236.20	1248.46		1321.28
	10PM		1877.46		1511.72	1503.92		1288.47	1315.86	1229.15	1245.69		1374.73
	11PM	1598.22	1397.13								1265.01		1293.01
	Average	2205.11	1864.80	1711.97	1606.98	1453.74	1417.43	1459.92	1378.95	1374.20	1283.36	1239.81	1626.36

VIEF CENTER OF EXCELLENCE FOI SUSTAINABLE URBAN

Final Remarks

- Fuel consumption and emissions on a per mile basis are about 13% in average higher in urban areas
- Emissions and fuel consumption vary with traffic conditions along the day, giving opportunities for demand management strategies that aim to shift time of travel
 - In NYC, vehicles produce 25% more emissions per mile in the most congested time of the day (5PM) in comparison to the least congested time of the day (3AM)
- The case of the Port of Elizabeth shows the potential reduction in fuel consumption and emissions if vehicles could arrive at the port at less congested times of the day
 - Vehicles could reduce emissions up to 33% by switching the arrival time to the port

Thank you!

