

# Testing the Association Between Development Patterns and Truck Crashes: A Case Study in Dallas-Fort Worth, TX

2022 International Urban Freight Conference - Track 3-2 US-based Case Studies

5/25/2022

#### Sanggyun Kang

Assistant Professor Department of International Logistics College of Business and Economics Chung-Ang University

#### **Table of Contents**

- 1 Background and prior studies
- 2 Research approach
- 3 Study area
- 4 Results
- 5 Conclusions and discussion



# Restructuring Urban Freight Landscape

- Expanding online shopping sales and package deliveries
  - Delivered packages by USPS from 3.1 billion (2010) to 6.2 (2019)
  - Delivery vehicles, as an integrated component of "convenient" urban lives
- Restructured freight transportation and logistics practices
  - Globalized production and distribution systems
  - Expanding online shopping sales
- → Changes in how goods are produced, distributed, stored, sold, and delivered
  - Restructured freight activity + associated <u>negative externalities</u>
- Negative externalities?
  - E.g., pollution, congestion, and vehicle crashes
     Our interest.



# Factors examined in road safety research

- Driver factors
- Vehicle factors
- Working conditions
- Network and road design
- Road safety devices
- Traffic flow and patterns
- Weather conditions
- Built environment characteristics

To formulate effective road safety policies at the regional level

Freight demand in urban areas  $\rightarrow$  freight flows  $\rightarrow$  truck crashes

(restructured demand)

(unknown)
Proprietary
aspects

(externalities)



#### Prior studies

- Between development patterns and freight trip generation
  - Sanchez-Diaz, Holguin-Veras, and Wang (2016)
- Between development patterns and freight vehicle activity
  - Giuliano, Kang, and Yuan (2018)
- Between development patterns and freight vehicle crashes
  - McDonald, Yuan, and Naumann (2019)
  - Yang, Chen, and Yuan (2021)
  - Not yet rigorously examined
- Data issues
  - Proprietary nature of freight activity
  - Lack of detailed data



### Research objectives

- 1. Examine if the spatial distribution of truck crashes on city streets is different from those of other vehicles
- 2. Test if truck crashes have a unique association with development patterns
- 3. This is *a case study* in the North Central Texas Council of Government region in *Dallas-Fort Worth (DFW), TX*



### Research approach

#### Conceptual model

Spatially disaggregate analysis (Noland and Quddus, 2004)



- Y is the number of vehicle crashes in zone (i)
- S is a vector for transport supply in zone (i)
- D is a vector for transport demand in zone (i)
- V is a vector for vehicle movement levels (exposure) in zone (i)
- f(•) is a functional form
  - · Over-dispersed count data model, negative binomial



# ... Research approach

- Dep. Variable: N of vehicle crashes on city streets only
  - Truck crashes (N=19,144)
  - Van crashes (N=29,171)
  - Passenger vehicle crashes (N=303,121)
  - Excluding the crashes on highways

Compare among three crash types

#### Data source

- TxDOT Crash Records Information System (CRIS)
- From 2010 to 2017
- Crashes with property damage (\$1,000+) or with injury or death only
- Trucks include truck, trailer, semi-trailer, pole trailer, and truck tractor
  - · Likely to include non-freight vehicles (utility and service)



# ... Research approach

#### Explanatory variable 1: Transport supply

- Intersection density
- Distance to nearest transport facilities (airport, intermodal terminals, highways)

#### Explanatory variable 2: Transport demand

- Population and employment characteristics
- E.g., population and employment densities, combination of density quartiles
- E.g., median household income, % below poverty, % non-white, % drive alone for work, % no high school diploma, relative industry diversity index

#### Explanatory variable 3: Vehicle movement levels

VMT per network mile per hexagon



# Definition of explanatory variables

| Variables                                | Definition                                                                                                                              | Data source                          |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Transport supply                         |                                                                                                                                         |                                      |
| Miles to the nearest airport             | Euclidean miles to the nearest airport from the centroid of a hexagon (in log)                                                          | My calculation                       |
| Miles to the nearest intermodal terminal | Euclidean miles to the nearest intermodal terminal from the centroid of a hexagon (in log)                                              | My calculation                       |
| Miles to the nearest highway exit        | Euclidean miles to the nearest highway ramp from the centroid of a hexagon (in log)                                                     | My calculation                       |
| Intersection density                     | Number of intersections per sq-mile (in log)                                                                                            | 2019 NCTCOG<br>Regional Data Center  |
| Transport demand                         |                                                                                                                                         |                                      |
| Population                               | Number of population per sq-mile (in log)                                                                                               | ACS 2013-2017                        |
| Employment                               | Number of employment per sq-mile (in log)                                                                                               | LEHD 2015                            |
| Household income                         | Median household income (in \$10,000)                                                                                                   | ACS 2013-2017                        |
| % non-white                              | % of non-white population (in %)                                                                                                        | ACS 2013-2017                        |
| % no high school diploma                 | % of the population over 25 without a high school diploma (in %)                                                                        | ACS 2013-2017                        |
| % drive alone for commute                | % of workers over 16 who drive alone for the commute (in %)                                                                             | ACS 2013-2017                        |
| % below poverty                          | % of population below the poverty line (excluded due to multicollinearity)                                                              | ACS 2013-2017                        |
| Relative diversity                       | The inverse of the sum of absolute differences of two-digit industry sector employment share between a hexagon and the regional average | LEHD 2015                            |
| Vehicle movement                         |                                                                                                                                         |                                      |
| All vehicle VMT per network mile         | = $\sum$ vehicle miles traveled per zone / $\sum$ network miles per zone (in log)                                                       | 2013 NCTCOG<br>Regional Travel Model |



# ••• Study area: Dallas-Fort Worth, TX

- 7.10 million population (ACS 2013-2017), 3.37 million employment (LEHD 2015)
- Intensive freight activity via D/FW International Airport, NAFTA corridors (Canada-US-Mexico), three Class I railroads, three Intermodal terminals



CA

# Distribution of car crashes by density quartiles





| Passenger car crashes per 1,000 residents |        |        | Truck crashes per 1,000 residents |        |        |        |        |        |        |
|-------------------------------------------|--------|--------|-----------------------------------|--------|--------|--------|--------|--------|--------|
|                                           | Pop Q1 | Pop Q2 | Pop Q3                            | Pop Q4 |        | Pop Q1 | Pop Q2 | Pop Q3 | Pop Q4 |
| Emp Q4                                    | 15.0   | 27.2   | 30.6                              | 38.7   | Emp Q4 | 3.23   | 2.94   | 2.20   | 1.86   |
| Emp Q3                                    | 20.9   | 27.3   | 30.1                              | 42.5   | Emp Q3 | 2.18   | 2.98   | 2.15   | 1.88   |
| Emp Q2                                    | 25.0   | 27.0   | 28.3                              | 39.4   | Emp Q2 | 2.49   | 2.14   | 1.63   | 1.86   |
| Emp Q1                                    | 19.3   | 28.5   | 27.1                              | 30.7   | Emp Q1 | 1.83   | 1.61   | 1.36   | 1.41   |



## Estimated negative binomial models

#### Model 1

$$N_{crash}$$

$$= \exp(\beta_0 + \beta_1 * VMTPM + \beta_2 * Air + \beta_3 * Intm + \beta_4 * Hwy + \beta_5 * Intsec + \beta_6 * Pop + \beta_7 * Emp + \beta_8 * Inc + \beta_9 * NWh + \beta_{10} * NHSD + \beta_{11} * Drive + \beta_{12} * RDI + 2)$$

#### Model 2

```
\begin{aligned} &N_{crash} \\ &= \exp(\beta_0 + \beta_1 * VMTPM + \beta_2 * Air + \beta_3 * Intm \\ &+ \beta_4 * Hwy + \beta_5 * Intsec + \beta_6 * Inc + \beta_7 * NWh \\ &+ \beta_8 * NHSD + \beta_9 * Drive + \beta_{10} * RDI \\ &+ \beta_{11} * ComQt + \varepsilon) \end{aligned}
```

```
N is the number of vehicle crashes;
\beta_n are coefficients to be estimated (n=0,
    1, ..., 12);
VMTPM is VMT per network mile;
Air is miles to the nearest airport;
Intm is miles to the nearest intermodal
    terminal:
Hwy is miles to the nearest highway ramp;
Intsec is intersection density;
Pop is population density;
Emp is employment density;
Inc is median household income;
NWh is % of non-white population;
NHSD is % of the population over 25
    without a high school diploma;
Drive is % of workers over 16 who drive
     alone for the commute;
RDI is a relative diversity index;
ComQt is a categorical variable for the
    combined density quartiles;
s is an error term.
```



# **Estimated negative binomial model 1**

| Dependent variables                    | Model 1-1 N of | passe | Model 1-2          |      | Model 1-3        |      |  |  |  |
|----------------------------------------|----------------|-------|--------------------|------|------------------|------|--|--|--|
| Dependent variables                    | nger car cras  | hes   | N of truck crashes |      | N of van crashes |      |  |  |  |
| Independent variables                  | Coef.          | Sig.  | Coef.              | Sig. | Coef.            | Sig. |  |  |  |
| Vehicle movement                       |                |       |                    |      |                  |      |  |  |  |
| VMT per link mile (log)                | 0.197          | **    | 0.197              | **   | 0.271            | **   |  |  |  |
| Transport supply                       |                |       |                    |      |                  |      |  |  |  |
| Miles to airport (log)                 | -0.070         | +     | -0.059             |      | -0.023           |      |  |  |  |
| Miles to intermodal (log)              | -0.048         |       | -0.073             | +    | -0.059           | +    |  |  |  |
| Miles to highway exit (log)            | -0.019         |       | -0.026             | +    | 0.008            |      |  |  |  |
| Intersection density (log)             | 0.748          | **    | 0.491              | **   | 0.789            | **   |  |  |  |
| Transport demand                       |                |       |                    |      |                  |      |  |  |  |
| Population (log)                       | 0.306          | **    | 0.022              |      | 0.281            | **   |  |  |  |
| <b>Employment (log)</b>                | 0.282          | **    | 0.375              | **   | 0.287            | **   |  |  |  |
| Median HH income (\$10k)               | -0.050         | **    | -0.037             | **   | -0.040           | **   |  |  |  |
| % Non-white                            | 0.009          | **    | 0.007              | **   | 0.005            | **   |  |  |  |
| % No high school diploma               | 0.007          | **    | 0.021              | **   | 0.012            | **   |  |  |  |
| % Drive alone                          | -0.007         | *     | -0.002             |      | -0.014           | **   |  |  |  |
| Relative diversity index               | 0.044          |       | 0.005              |      | 0.058            |      |  |  |  |
| Constant                               | -5.340         | **    | -5.409             | **   | -8.077           | **   |  |  |  |
| Log Alpha                              | -0.716         | **    | -0.703             | **   | -0.824           | **   |  |  |  |
| Log Likelihood                         | -11,096.3      |       | -5,836.2           |      | -6,307.1         |      |  |  |  |
| Log Likelihood, constant-only          | -12,574.4      |       | -6,810.4           |      | -7,602.5         |      |  |  |  |
| Pseudo-R-squared                       | 0.118          |       | 0.143              |      | 0.170            |      |  |  |  |
| N                                      | 2,157          |       | 2,157              |      | 2,157            |      |  |  |  |
| Note: +P < 0.10, *P < 0.05, **P < 0.01 |                |       |                    |      |                  |      |  |  |  |

# **Estimated negative binomial model 2**

| Dependent variables           | Model 1-1 N of nger car cras | _  | Model 1-2<br>N of truck crashes |    | Model 1-3<br>N of van crashes |    |
|-------------------------------|------------------------------|----|---------------------------------|----|-------------------------------|----|
| Independent variables         | Coef. Sig.                   |    | Coef. Sig.                      |    | Coef. Sig.                    |    |
| Vehicle movement              |                              |    |                                 |    |                               |    |
| VMT per link mile (log)       | 0.206                        | ** | 0.212                           | ** | 0.296                         | ** |
| Transport supply              |                              |    |                                 |    |                               |    |
| Miles to airport (log)        | -0.059                       |    | -0.070                          |    | 0.009                         |    |
| Miles to intermodal (log)     | -0.056                       | +  | -0.110                          | ** | -0.085                        | *  |
| Miles to highway exit (log)   | -0.037                       | *  | -0.041                          | ** | -0.016                        |    |
| Intersection density (log)    | 0.752                        | ** | 0.533                           | ** | 0.783                         | ** |
| Transport demand              |                              |    |                                 |    |                               |    |
| Median HH income (\$10k)      | -0.040                       | ** | -0.045                          | ** | -0.027                        | ** |
| % Non-white                   | 0.009                        | ** | 0.006                           | ** | 0.005                         | ** |
| % No high school diploma      | 0.010                        | ** | 0.018                           | ** | 0.014                         | ** |
| % Drive alone                 | 0.001                        |    | -0.004                          |    | -0.006                        | *  |
| Relative diversity index      | 0.110                        | +  | 0.028                           |    | 0.121                         | *  |
| Constant                      | -3.460                       | ** | -3.933                          | ** | -6.532                        | ** |
| Log Alpha                     | -0.695                       | ** | -0.669                          | ** | -0.819                        | ** |
| Log Likelihood                | -11,117.0                    |    | -5,855.1                        |    | -6,297.2                      |    |
| Log Likelihood, constant-only | -12,574.4                    |    | -6,810.4                        |    | -7,602.5                      |    |
| Pseudo-R-squared              | 0.116                        |    | 0.140                           |    | 0.172                         |    |
| N                             | 2,157                        |    | 2,157                           |    | 2,157                         |    |



# **Estimated negative binomial model 2**





| Predictive margins of the combined quartiles (passenger car crashes) |        |        | Predictive margins of the combined quartiles (truck crashes) |        |        |        |        |        |        |
|----------------------------------------------------------------------|--------|--------|--------------------------------------------------------------|--------|--------|--------|--------|--------|--------|
|                                                                      | Pop Q1 | Pop Q2 | Pop Q3                                                       | Pop Q4 |        | Pop Q1 | Pop Q2 | Pop Q3 | Pop Q4 |
| Emp Q4                                                               | 67.9   | 114.3  | 118.8                                                        | 155.3  | Emp Q4 | 12.1   | 11.2   | 9.0    | 8.7    |
| Emp Q3                                                               | 63.4   | 72.2   | 78.8                                                         | 127.0  | Emp Q3 | 5.3    | 7.1    | 5.7    | 6.3    |
| Emp Q2                                                               | 33.0   | 57.9   | 69.9                                                         | 95.7   | Emp Q2 | 3.3    | 4.6    | 4.3    | 4.8    |
| Emp Q1                                                               | 20.3   | 46.9   | 57.7                                                         | 81.7   | Emp Q1 | 1.8    | 2.8    | 3.3    | 4.8    |



#### Conclusions and discussion

#### Results are consistent with prior studies

- VMT per network mile (+), intersection density (+), household income (-),
   % non-white (+), % no high school diploma (+)
- Some variables were not as consistent as expected (Miles to nearest airport, intermodal terminal, highway exit)

#### Zone-level heterogeneity beyond simple density aspects

Percent distribution of employment by sector



FIS: manufacturing, wholesale/retail trade, transportation and warehousing, accommodation and food services Holguin-Veras et al. (2011), Sanchez-Diaz et al. (2016)



#### Conclusions and discussion

- Zone-level heterogeneity beyond simple density aspects
  - Percent distribution of employment by sector









# Thank you!

≥ sggkang@cau.ac.kr

#### ... References

- Giuliano, Genevieve, Kang, Sanggyun, Yuan, Quan. 2018. "Using Proxies to Describe the Metropolitan Freight Landscape." *Urban Studies* 55 (6): 1346–63.
- Holguín-Veras, José, Miguel Jaller, Lisa Destro, Xuegang (Jeff) Ban, Catherine Lawson, and Herbert S. Levinson. 2011. "Freight Generation, Freight Trip Generation, and Perils of Using Constant Trip Rates." Transportation Research Record: Journal of the Transportation Research Board 2224 (1): 68–81.
- McDonald, Noreen, Quan Yuan, and Rebecca Naumann. 2019. "Urban Freight and Road Safety in the Era of E-Commerce." *Traffic Injury Prevention* 20 (7): 764–70.
- Noland, Robert B., and Mohammed A. Quddus. 2004. "A Spatially Disaggregate Analysis of Road Casualties in England." Accident Analysis & Prevention 36 (6): 973–84.
- Sánchez-Díaz, Iván, José Holguín-Veras, and Xiaokun Wang. 2016. "An Exploratory Analysis of Spatial Effects on Freight Trip Attraction." *Transportation* 43 (1): 177–96.
- Yang, Chao, Mingyang Chen, and Quan Yuan. "The geography of freight-related accidents in the era of E-commerce: evidence from the Los Angeles metropolitan area." Journal of transport geography 92 (2021): 102989.

