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Research Problem

To assign a number of demands from origins to destinations with

considerations of several factors: time window, road network traffic
condition, emissions, etc.

* Time window: pick up time window, delivery time window
* Road network traffic condition: Vehicle Travel Time
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Formulation

minTC(X) = 777 7 Si (k)X (k)
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d;; : The total demand from an
origin I to a destination J;

Xi j(k) : The freight demand in
units of containers from an
origin I to a destination j using a
route r with a departure time k;
x;(k) : The number of containers
using edge [ at time k;

u; : The edge capacity in units of
vehicles for edge [;

v;(k) : The vehicle capacity in
units of containers per freight
vehicle for edge [;

S; j(k) : combination of the non-
travel time vehicle cost Ci’:j(k)
and the cost of the route travel
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Methodology: co-simulation optimization
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Methodology:

* Step I:Initialize iteration number, cost coefficients, route collections.

» Step 2: Check if the stop criteria is satisfied. if not, go to Step 3; otherwise,
terminate the algorithm and output the result.

* Step 3:Input the route flow vector into the traffic simulator and obtain the
marginal cost of each segment.

* Step 4: Update the marginal cost of each segment as well as routes for each O/D
pair and check whether there is a new minimal marginal cost route. If there is,
then add it into the route collection.

* Step 5: Construct an augmented route flow vector by assigning the trucks onto
the minimum cost route in the current traffic status in an all-or-nothing manner.

* Step 6:Set the route flow vector for the next iteration as a linear combination of

the previous route flow vector and the augmented route flow vector. Go to Step
2.
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Methodology: marginal cost

* Marginal cost : the change in total cost if we add one truck at time instance k
on service link [
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Distributed co-simulation optimization method

* Limitation of centralized co-simulation optimization method: computational
complexity when applied to a large-scale road network.

Abstracted service
network

service subnetworks

road network in
simulator
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Distributed co-simulation optimization method

» Step I:Initialize iteration number, cost coefficients, route collections, etc.

* Step 2: Check if the stop criteria is satisfied. if not, go to Step 3; otherwise,
terminate the algorithm and output the result.

* Step 3:Input the abstract service network route flow vector into each service
subnetwork.

* Step 4: For each service subnetwork and road subnetwork pair, perform a load
balancing scheme as in the centralized co-simulation method.

» Step 5:Update the marginal cost for the abstracted service network and check
whether there is a new minimal marginal cost route. If there is, add it to the
associated route collection and created an augmented route flow vector.

* Step 6: Set the route flow vector for the next outer loop iteration as a linear
combination of the previous route flow vector and the augmented route flow
vector. Go to Step 2.
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Numerical Results

Long Beach Network
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Total number of demand: 3514
Configure the scenarios by
decomposing the network into
2, 3,4 subnetworks.Apply the
distributed co-simulation
optimization method for each
scenario and gain the total cost
value and computation time of
each scenario.

The centralized load balancing
method is also applied on the
network as a base for
comparison.
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Numerical Results

* Metropolitan Network

Long Beach
Irvine

g
L

Total number of demand:
13600

Configure the scenarios by
decomposing the network
into 3,4, 5 subnetworks.
Apply the distributed co-
simulation optimization
method for each scenario
and gain the total cost value
and computation time of
each scenario.

The centralized load
balancing method can not
be applied on the network
since the capability of the
simulator and exponentially
growing variables.
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Numerical Results

* Long Beach Network

* Performance pattern under different number of subnetworks

# of Subnetworks 0 2 3 4

Total Cost Cq 1.053C; 1.091C; 1.147C,
Computation Time 4792 3558 3102 3907
(second)

¢, = $342189.00

* Observation:
With the increase of the number of subnetworks, the total cost gained from the distributed

load balancing method is moving away from the optimal one gained from centralized load
balancing method. However, the computational time is gained through dividing the network.
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Numerical Results

* Long Beach Network

e Pattern under different number of demands

Demands # of Subnetworks

Total Cost
# of demands = 3514 - -
Computation Time

(second)

Total Cost
# of demands = 7028 - -
Computation Time

(second)

Total Cost

# of demands = 14056 - -
Computation Time

(second)

0
(1
4792

2
1.053C;
3558

1.059C,

0.784T,
1.073C,

0.806T;

3 4
1.091C, 1.147¢C;
3102 3907

1.096C, 1.151C,

0.664T, 0.827T,
1.117C; 1.194C,

0.675T; 0.862T;

¢; = $342189.00
¢, = $728162.00
c; = $1708326.00
T, = 5238's

T, = 7965 s
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Numerical Results

* Long Beach Network

* Performance pattern under different number of boundary nodes

# of demands = 3514

# of subnetworks = 2

e Observation:

# of Boundary 5 6 7
Nodes
Total Cost 1.024C  1.012C C
Computation T 1.037T @ 1.083T
Time
(second)
C = $355880.00
T= 3558

With the decrease of the number of boundary nodes, we gain benefits on computation time,

while lose some optimality.
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Numerical Results

* Metropolitan Network

* Performance pattern under different number of subnetworks

Demands

# of demands = 13600

# of demands = 27200

e Observation:

# of 3 4 5
Subnetworks

Total Cost Cy 1.096C, 1.155C,
Computation 1.648T, 1.217T, T,
Time (second)

Total Cost Cs 1.114Cs 1.189C5
Computation 191875 1.39Ts Ty

Time (second)

With the increase of the number of subnetworks, the total cost gained from the distributed
load balancing method is moving away from the optimal one gained from centralized load
balancing method. However, the computational time is gained through dividing the network.
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Conclusions

The distributed co-simulation optimization method is tested under two
networks: Long Beach network and metropolitan network and tested can
address the scalability issue encountered by centralized co-simulation method.
For Long Beach network, the distributed co-simulation optimization method is
tested based on different number of subnetworks, boundary nodes and demand.
By decreasing the number of boundary nodes, we can achieve less computational
time with some loss on optimality. By increasing the number of subnetworks, we
can achieve saving a large amount of computational time with a relatively small
loss on the optimality. However, a proper decomposition is needed since if the
network is decomposed too much, the interactions between subnetworks will
compromise the computational time gained from decomposition.

Under various number of demand, the pattern of computational time VS
optimality sustains.

For metropolitan network, similar relation between performance and number of
subnetworks is revealed.
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