Rewarding Zero-Emissions Container Movements

Miguel Jaller
Co-Director Sustainable Freight Research Program
May 25th, 2022
Co-author: Emil Youssefzadeh
San Pedro Bay Ports

• Ports of Los Angeles and Long Beach (POLA/LB)
 • 30%+ of total imported goods to the U.S.
 • 60% of freight tonnage imported/exported in the West Coast

• Located in the South Coast air basin
 • Chronic air quality issues

• Since 2012 conducting zero emission drayage demonstration projects
 • Millions in funding
Clean Air Action Plan (CAAP) 2017

• All vehicles accessing the port to be zero-emission by 2035
 • Near-zero emission heavy duty trucks (NZEHDT)
 • Zero-emission heavy duty trucks (ZEHDT)

• Clean Truck Fund Rate (CTFR)
 • Charged to beneficial cargo owners (BCOs)
 • Every container moved in non-ZEHDTs
 • Harbor Commission approved a CTFR of $10 per TEU

Los Angeles Times

L.A.-Long Beach ports approve truck fee too low to clean smog, groups charge

LA, LB Ports Postpone Plan for Clean Truck Fund
April 1, 2022 CTF Started

$10 per TEU

Expects to collect $90 million in the first year
Transitioning to ZEHDTs and NZEHDTs

Incentives are Needed
Key Factors Affecting the Use and Efficiency of ZEHDTs for Drayage

Operational:
- Shift duration and travelled distance
- Average loads
- Trips vs. tour composition
- Dual transactions
- Truck turn times

Fleets and vehicles:
- Nature of business and fleet size
- Truck price
- Vehicle characteristics and fueling/charging characteristics
Incentives

• Most in the form of purchase vouchers
• Example:
 • Hybrid and Zero-Emission Truck and Bus Voucher Incentive Project (HVIP)
 • Up to $150,000 for Class 8 Battery Electric Trucks
 • There are ~15,000 – 18,000 drayage trucks serving the POLA/LB
 • ~$2.3 – $4.5 billion on incentives

• Challenges:
 • Lack of capacity to internalize risk
 • Vouchers for drayage would require billions of dollars
 • Existing funding level is not commensurate with needs
 • Incentives may favor large carriers
Rewards Program: Leveraging the CTFR

- Innovative coupling of the CTFR with a rewards program attached to zero-emission transport at the ports
 - Reward carrier for every container movement made by ZEHDT
 - Reward level to bridge the gap between diesel and ZEHDT costs
- Evaluate the program as potential solution to accelerate the transformation to cleaner technologies

- Opportunities:
 - Improve efficiency
 - Consistent with other programs that reward use
 - Mitigates the burden on carriers
Methodology
Method

1. Gather data from secondary sources;
2. Characterize and synthesize drayage operations;
3. Forecast improvements in operations, vehicle characteristics, and port activity;
4. Mathematical optimization: estimate CTFR and Reward levels
5. Generate and simulate different scenarios
6. Impact assessment
Container Forecast and Technology Penetration

Scenarios:
Container demand – low, mid, high
ZEHDT penetration – low, high
NZEHDT penetration – low, high

Container-ZEHDT-NZEHDTS
Optimal CTFR & Reward Level

Bridge the gap between ZEHDT and Diesel

Min $Z_{CTFR, reward} = CTFR_{reward} + \sum_{t=1}^{MT} S^t \cdot AZE_t$

Subject to:

$ZE_t = ZE_{t-1} - ZE_{t-1}, \forall t$

$NZE_t = NZE_{t-1} - NZE_{t-1}, \forall t$

$AZE_t = \min \left(\frac{D_t}{313 \cdot \text{teu} \cdot t_{313-ZE}^t}, \frac{ZE_t}{2} \right), \forall t$

$ANZE_t = \min \left(\frac{D_t - 313 \cdot \text{teu} \cdot t_{313-ZE}^t \cdot AZE_t - NZE_t}{313 \cdot \text{teu} \cdot t_{313-ZE}^t}, \frac{NZE_t}{2} \right), \forall t$

$ANE_t = \left(\frac{D_t - 313 \cdot \text{teu} \cdot t_{313-ZE}^t \cdot AZE_t + t_{313-ZE}^t \cdot ANZE_t}{313 \cdot \text{teu} \cdot t_{313-ZE}^t} \right), \forall t$

$CTF_{Collection} = \left\{ \begin{array}{ll} 313 \cdot \text{teu} \cdot t_{313-ZE}^t \cdot \text{teu} \cdot CTFR_t \cdot ANE_t, & \forall t < 9 \text{ (year 2030)} \\ 313 \cdot \text{teu} \cdot t_{313-ZE}^t \cdot \text{teu} \cdot CTFR_t \cdot (ANE_t + ANZE_t), & \forall t \geq 9 \end{array} \right.$

$IRR_{Disbursement} = 313 \cdot \text{teu} \cdot t_{313-ZE}^t \cdot ANE_t \cdot CTFR_t, \forall t$

$CTF_{Cum_Collection} = CTF_{Cum_Collection} + CTF_{Collection}, \forall t$

$IRR_{Cum_Disbursement} = IRR_{Cum_Disbursement} + IRR_{Disbursement}, \forall t$

$CTFR_t = CTF_{Cum_Collection} - IRR_{Cum_Disbursement}, \forall t$

$CTFR_t \geq 0, \forall t$

$CTFR_t \geq CTFR_{t-1}, \forall t$

$IRR_t \leq IRR_t, \forall t$

$IRR_t^5 = \left\{ \begin{array}{ll} \text{Min}_{t \leq 5} IRR_{TEU}, & \forall t \leq 5 \\ \text{Min}_{t > 5} IRR_{TEU}, & \forall t > 5 \end{array} \right.$

$IRR_t \geq IRR_t^5, \forall t$

$n_{CTF} S^t = \sum_{t=1}^{MT} IRR_t^5 \cdot 313 \cdot \text{teu} \cdot t_{313-ZE}^t, \forall t \geq t$

Minimum level of reward needed

Fleet penetration and active fleet balance

CTFR collection and Reward Disbursement

Minimum reward
Optimal CTFR & Reward Level

Continuous reward

Mid-Price Scenario

Low-Price Scenario
Optimal CTFR & Reward Level

Impact of Turn Time Improvements

Mid-Price Scenario

Low-Price Scenario

M-L-H: Mid Container Demand, Low NZEHD, High ZEHDT penetration
Optimal CTFR & Reward Level

Covering 5-year lease

• CTFR: $22-$56 per TEU
• Reward:
 • 2022: ~$90
 • 2035: ~$5-$23

M-L-H: Mid Container Demand, Low NZEHD, High ZEHDT penetration
Potential Benefits

Example:

• Can transition 17,000+ trucks by 2035

• Emissions reduction:
 • 10.3 million metric tons CO2
 • ~50% PM
 • ~95% NOx & SOx
Discussion

• A self-supported rewards program could achieve significant benefits
 • More if other incentives are available

• Considerations:
 • Price gap to bridge
 • Small fleet and owner operators
 • Reward limits
 • Most effective if ZEHDTs conduct local and regional as opposed to near-dock movements
 • Could be tied to e-mileage, or even market-based reward value pricing
Questions?

mjaller@ucdavis.edu

Miguel Jaller
Vehicle Efficiency Forecasts

<table>
<thead>
<tr>
<th>Year</th>
<th>Fully Loaded Container (mile)</th>
<th>Empty Container (mile)</th>
<th>No Container (mile)</th>
<th>Battery Capacity (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present*</td>
<td>60</td>
<td>85</td>
<td>100</td>
<td>240</td>
</tr>
<tr>
<td>Present 2***</td>
<td>93</td>
<td>131</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>2022-2025</td>
<td>156</td>
<td>250</td>
<td>328</td>
<td>525</td>
</tr>
<tr>
<td>2025-2030</td>
<td>204</td>
<td>323</td>
<td>433</td>
<td>650</td>
</tr>
<tr>
<td>Freightliner eCascadia Battery Electric</td>
<td>119</td>
<td>168</td>
<td>198</td>
<td>475</td>
</tr>
<tr>
<td>Kenworth T680E Battery Electric Truck</td>
<td>99</td>
<td>140</td>
<td>165</td>
<td>396</td>
</tr>
<tr>
<td>Lion Electric LION8 Class 8 Truck</td>
<td>80</td>
<td>113</td>
<td>133</td>
<td>320</td>
</tr>
<tr>
<td>Peterbilt 579EV Battery Electric Truck</td>
<td>99</td>
<td>140</td>
<td>165</td>
<td>396</td>
</tr>
<tr>
<td>Volvo VNR Electric Rev 1</td>
<td>66</td>
<td>94</td>
<td>110</td>
<td>264</td>
</tr>
<tr>
<td>Volvo VNR Rev 2</td>
<td>170</td>
<td>265</td>
<td>300</td>
<td>565</td>
</tr>
</tbody>
</table>

*The first row of data is based on demonstration results; **Based on HVIP offerings

<table>
<thead>
<tr>
<th>Year</th>
<th>Consumption Rate with Fully Loaded Container (kWh/mile)</th>
<th>Consumption Rate with Empty Container (kWh/mile)</th>
<th>Consumption Rate with No Container (kWh/mile)</th>
<th>Battery Capacity (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present*</td>
<td>4</td>
<td>2.82</td>
<td>2.4</td>
<td>240</td>
</tr>
<tr>
<td>Present 2***</td>
<td>4</td>
<td>2.82</td>
<td>2.4</td>
<td>370</td>
</tr>
<tr>
<td>2022-2025</td>
<td>3.37</td>
<td>2.1</td>
<td>1.6</td>
<td>525</td>
</tr>
<tr>
<td>2030</td>
<td>3.18</td>
<td>2.01</td>
<td>1.5</td>
<td>650</td>
</tr>
<tr>
<td>2035</td>
<td>3</td>
<td>2</td>
<td>1.5</td>
<td>900</td>
</tr>
</tbody>
</table>

*240kwh for present year is based on demonstration interview results & US Hybrid Battery Electric Class 8 Truck Spec Sheet.
Truck Movement Efficiency

<table>
<thead>
<tr>
<th>Category</th>
<th>One Way Miles</th>
<th>% of Gate moves</th>
<th>Adjusted % of Gate moves</th>
<th>Loaded % of Gate moves</th>
<th>Emptied % of Gate moves</th>
<th>kWh Loaded</th>
<th>kWh Emptied</th>
<th>kWh Full & Empty</th>
<th>kWh Full & Empty - Single-tour</th>
<th>Time Single-tour (ST)</th>
<th>Max ST per shift</th>
<th>kWh Full & Empty - Single-Tours Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near Dock</td>
<td>2</td>
<td>9.2%</td>
<td>9.8%</td>
<td>4.7%</td>
<td>4.5%</td>
<td>0.09</td>
<td>0.09</td>
<td>0.38</td>
<td>0.25</td>
<td>6.85</td>
<td>11.65</td>
<td>2.53</td>
</tr>
<tr>
<td></td>
<td>11.65</td>
<td>15.1%</td>
<td>15.7%</td>
<td>5.0%</td>
<td>0.78</td>
<td>0.03</td>
<td>0.07</td>
<td>19.81</td>
<td>2.38</td>
<td>2.38</td>
<td>2.38</td>
<td>2.38</td>
</tr>
<tr>
<td></td>
<td>2.38</td>
<td>14.2%</td>
<td>15.1%</td>
<td>5.0%</td>
<td>2.75</td>
<td>0.09</td>
<td>0.26</td>
<td>79.23</td>
<td>2.26</td>
<td>4.13</td>
<td>2.26</td>
<td>4.13</td>
</tr>
<tr>
<td></td>
<td>4.13</td>
<td>16.2%</td>
<td>17.2%</td>
<td>5.0%</td>
<td>8.92</td>
<td>8.28</td>
<td>23.36</td>
<td>137.27</td>
<td>2.26</td>
<td>5.24</td>
<td>2.26</td>
<td>5.24</td>
</tr>
<tr>
<td></td>
<td>5.24</td>
<td>43.0%</td>
<td>45.7%</td>
<td>22.3%</td>
<td>17.3%</td>
<td>4.43</td>
<td>4.12</td>
<td>257.39</td>
<td>2.26</td>
<td>7.74</td>
<td>2.26</td>
<td>7.74</td>
</tr>
<tr>
<td></td>
<td>7.74</td>
<td>4.0%</td>
<td>4.0%</td>
<td>5.0%</td>
<td>18.00</td>
<td>-</td>
<td>12.00</td>
<td>1,920.00</td>
<td>2.26</td>
<td>0.13</td>
<td>2.26</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>0.13</td>
<td>8.0%</td>
<td>8.8%</td>
<td>4.1%</td>
<td>0.08</td>
<td>0.08</td>
<td>0.16</td>
<td>8.70</td>
<td>2.53</td>
<td>3.92</td>
<td>3.92</td>
<td>3.92</td>
</tr>
<tr>
<td></td>
<td>3.92</td>
<td>15.0%</td>
<td>16.5%</td>
<td>14.5%</td>
<td>0.73</td>
<td>0.02</td>
<td>0.05</td>
<td>16.64</td>
<td>2.83</td>
<td>3.49</td>
<td>3.49</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>3.49</td>
<td>13.0%</td>
<td>14.3%</td>
<td>12.6%</td>
<td>2.52</td>
<td>0.08</td>
<td>0.18</td>
<td>66.57</td>
<td>4.35</td>
<td>2.27</td>
<td>2.27</td>
<td>2.27</td>
</tr>
<tr>
<td></td>
<td>2.27</td>
<td>40.0%</td>
<td>44.0%</td>
<td>20.7%</td>
<td>8.30</td>
<td>7.70</td>
<td>16.18</td>
<td>174.34</td>
<td>5.24</td>
<td>1.89</td>
<td>1.89</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td>1.89</td>
<td>15.0%</td>
<td>16.5%</td>
<td>7.8%</td>
<td>5.83</td>
<td>5.42</td>
<td>11.38</td>
<td>206.89</td>
<td>7.44</td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>1.33</td>
<td>9.0%</td>
<td>9.0%</td>
<td>0.0%</td>
<td>27.00</td>
<td>-</td>
<td>0.00</td>
<td>1,920.00</td>
<td>0.13</td>
<td>2.38</td>
<td>2.38</td>
<td>2.38</td>
</tr>
<tr>
<td></td>
<td>2.38</td>
<td>2020</td>
<td>2022</td>
<td>2025</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>2025</td>
<td>2022</td>
<td>2025</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>2025</td>
<td>2022</td>
<td>2025</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>2025</td>
<td>2022</td>
<td>2025</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>2025</td>
<td>2022</td>
<td>2025</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>2025</td>
<td>2022</td>
<td>2025</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>2025</td>
<td>2022</td>
<td>2025</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>2025</td>
<td>2022</td>
<td>2025</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>2025</td>
<td>2022</td>
<td>2025</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th></th>
<th>2022</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average One-Way Miles</td>
<td>47.58</td>
<td>57.76</td>
<td>67.34</td>
<td>67.34</td>
</tr>
<tr>
<td>Adj. Avg One-Way Miles</td>
<td>29.58</td>
<td>30.76</td>
<td>31.34</td>
<td>31.34</td>
</tr>
<tr>
<td>Avg kWh</td>
<td>175.46</td>
<td>177.75</td>
<td>198.22</td>
<td>198.22</td>
</tr>
<tr>
<td>Adj. Avg kWh</td>
<td>103.46</td>
<td>86.76</td>
<td>83.74</td>
<td>83.74</td>
</tr>
<tr>
<td>Average kWh/ST</td>
<td>289.66</td>
<td>270.17</td>
<td>299.23</td>
<td>299.23</td>
</tr>
<tr>
<td>Adj. Avg kWh/ST</td>
<td>185.60</td>
<td>149.42</td>
<td>148.58</td>
<td>148.58</td>
</tr>
<tr>
<td>Avg Max ST/shift (Avg daily turns)</td>
<td>1.71</td>
<td>2.12</td>
<td>2.03</td>
<td>2.03</td>
</tr>
<tr>
<td>Adj. Avg Max ST/ST (Adj. Avg daily turns)</td>
<td>1.81</td>
<td>2.29</td>
<td>2.25</td>
<td>2.25</td>
</tr>
<tr>
<td>Avg. kWh/day</td>
<td>463.46</td>
<td>432.27</td>
<td>478.76</td>
<td>478.76</td>
</tr>
<tr>
<td>Adj. Avg kWh/day</td>
<td>296.96</td>
<td>239.08</td>
<td>237.72</td>
<td>237.72</td>
</tr>
</tbody>
</table>

Adjusted values do not consider the "Long Distance" trips