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Motivation and Background
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❖Traffic congestion cost in US in 2019: $88 billion

❖Longer traffic can worsen the air quality

❖Strategies to solve traffic congestion

1. Adding more capacity

2. Transportation System Management and Operation (TSM)

3. Demand management

❖Road pricing policy

➢ Pros: in theory and some cases work

➢ Cons: equity barriers

❖Rewarding policy (positive incentive)

✓ Three projects in the Netherlands

✓ CAPRI project

✓ This research project

[4]
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❖Personalized

Incentive Offering Process
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Incentivizing Process

Central 
planner

Central 
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Step 1: Sharing routes/preferences

Step 2:  Offering incentives

High level process Detailed process

Users send OD 
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Traffic prediction

Finding possible 
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individual drivers

Users make 
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Modeling
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What should be our objective/goal?

• Minimize incentivizing cost

• Maximize a utility of the drivers’ travel times

• Minimize Carbon emission footprint

A simple formulation

Drivers’ responses are 

random variables
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First Model
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➢ Pros: ILP → off-the-shelf solvers

➢ Cons:

➢ Is it fair?

➢ It assumes feasibility.

➢ Major (limiting) assumption:

➢ We are operating below the system capacity 

(feasibility).



Operating in Congested Networks
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𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑆𝑝𝑒𝑒𝑑, 𝑉𝑜𝑙𝑢𝑚𝑒, 𝑅𝑜𝑢𝑡𝑖𝑛𝑔)

𝑆𝑝𝑒𝑒𝑑
(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑) 𝑉𝑜𝑙𝑢𝑚𝑒

ො𝑣𝑡 , 𝑡 = 1,… , 𝑇

𝑅𝑜𝑢𝑡𝑖𝑛𝑔 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑟𝑖𝑣𝑒𝑟𝑠

𝑂𝑓𝑓𝑒𝑟𝑒𝑑 𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒𝑠 (𝑺)

𝑅(⋅) borrowed from [2]

𝑃(⋅) borrowed from [1]

𝐵𝑃𝑅 ⋅
[3]

[1] Chenfeng Xiong, Mehrdad Shahabi, Jun Zhao, Yafeng Yin, Xuesong Zhou, and Lei Zhang. An integrated and personalized traveler information and incentive scheme for energy efficient mobility systems. 

Transportation Research Part C: Emerging Technologies, 2019.

[2] Wei Ma and Zhen Sean Qian. Estimating multi-year 24/7 origin-destination demand using high-granular multi-source traffic data. Transportation Research Part C: Emerging Technologies, 96:96–121, 2018.

➢ Modular Design

➢Can be changed if needed

➢Can be learned 

➢Use preference learning

➢Parameterize by a neural network and learn

➢How to solve it? Large-scale and challenging

[4] PG Boulter and IS McCrae.  Artemis:  Assessment and reliability of transport emission models and inventory systems-final report. TRL Published Project Report, 2007.

Example: Use the total carbon emission as the objective

→ Total Carbon Emission [3,4]

→ Estimated volume [1,2]

→ One incentive per driver

→ Budget constraint

→Aware of the # of drivers per O-D

[3] United States. Bureau of Public Roads. Traffic assignment manual for application with a large, highspeed computer, volume 37. US Department of Commerce, Bureau of Public Roads, Office of Planning, 

Urban Planning Division, 1964.
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Efficient Algorithm
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[1] Chenfeng Xiong, Mehrdad Shahabi, Jun Zhao, Yafeng Yin, Xuesong Zhou, and Lei Zhang. An integrated and personalized traveler information and incentive scheme for energy efficient mobility systems. 

Transportation Research Part C: Emerging Technologies, 2019.

[2] Wei Ma and Zhen Sean Qian. Estimating multi-year 24/7 origin-destination demand using high-granular multi-source traffic data. Transportation Research Part C: Emerging Technologies, 96:96–121, 2018.

[4] PG Boulter and IS McCrae.  Artemis:  Assessment and reliability of transport emission models and inventory systems-final report. TRL Published Project Report, 2007.

→ Total Carbon Emission [3,4]

→ Estimated volume [1,2]

→ One incentive per driver

→ Budget constraint

→Aware of the # of drivers per O-D

[3] United States. Bureau of Public Roads. Traffic assignment manual for application with a large, highspeed computer, volume 37. US Department of Commerce, Bureau of Public Roads, Office of Planning, 

Urban Planning Division, 1964.

[4]

Theorem: Relaxing the last constraint leads to a convex optimization problem!

➢ How should we solve this problem?

• First order methods 

• Off-the-shelf solvers such as CVX and Gurobi

➢ It is still challenging due to massive scale of the problem. 

➢ Can we use distributed/edge computation? 

➢ Can we exploit the individual processing power of drivers’ smartphones?

➢ We use Alternating Direction Method of Multipliers (ADMM) to do distributed computation.

[3]
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Alternating Direction Method of Multipliers (ADMM) - Background
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Solving linearly constrained optimization problems in form:

Augmented Lagrangian function

Augmented update rules
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Relaxation & 
Reformulation

ADMM

Efficient Algorithm for Finding Optimal Incentives

➢The update rule of 𝛾ℓ,𝑡 can be done in parallel. Different columns of variables W, S, H can be updated in 

parallel (via edge computation).

➢Theorem: The above algorithm finds an 𝜖-solution of the relaxed problem in 𝑂(1/𝜖) iterations.

➢How to do rounding? ADMM-Q algorithm (became popular recently for training binary neural networks)
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Network Construction

1111University of Southern California

❖ How do we construct the network?

❖ How to estimate O-D pairs for drivers?

• We do not have access to prior O-D as some works need [1-4]

• We have a large-scale problem (some prior work cannot scale)

• We use [5]

❖ Data:

• ADMS (Archived Data Management System at USC)

o Real-time traffic data such as volume and speed

o Collected by loop sensors

o Highway data → recorded every 30 seconds

o Arterial road data → recorded every 1 minute

• City: Los Angeles

➢ Why this region?

1. Available detailed data

2. Including both heavy and light traffic

• Date: March, April, and May 2018

• Only business days

• Used features: speed and volume
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Numerical Experiments - Small Region
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❖ Experiment I:

• Region: USC neighborhood

• Only arterial roads

• Incentive Set: {$0, $1, $2, $5, $10, $1000}

12
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Numerical Experiments - Large Region
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❖ Experiment II:

• Region: Los Angeles

• Only highways 

• Incentive Set: {$0, $1, $2, $5, $10, $1000}

13
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Conclusion
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• Offering personalized incentives to drivers to reduce congestion

• Efficient algorithms to solve the problem in large-scale 

• Utilizing the computational power of individuals’ smartphones by distributed algorithm

14
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❖ Future work:

• Considering different travel modes such as public transportation, carpooling, and biking in options

• Utilizing preference learning to learn the drivers’ acceptance probability

• More features such as income value and gender in computation the drivers’ acceptance probability

• Implementation and analysis of the algorithm in the real-world

• Combining the data of highways and arterial ways

Download the code
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❖ Theory of congestion pricing has been widely studied (de Palma and Lindsey 2011, Tsekeris and Voß 2009)

• Time or area dependent pricing (Zheng et al 2016)

• Distance dependent (Daganzo and Lehe 2015)

• Based on vehicle characteristics (Zhang et al 2018)

❖ Limitations:

• Political barriers, social barriers such as equity, and unpopularity of taxation (Knockaert et al 2012,

Levinson 2010, Martens et al 2012)

❖ Token-based schemes as an alternative idea (Verhoef et al 1997, Viegas 2001, Raux 2004).

• Design and technological complexities (Azevedo et al 2018)

❖ Offering rewards

• Psychologically more effective than penalizing (Brehm 1966)

• More popular (Knockaert et al 2012)

• Some studies on offering rewards:

o Context of safe driving (Mazureck and Hattem 2006, Bolderdijk et al 2011)

o Context of congestion reduction (Bliemer et al 2009, Knockaert et al 2012, Yue et al 2015)
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A Simple Model
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Set of drivers

Set of incentives for driver n

𝑠𝑖
𝑛 ∈ 0,1 ,

Decision variable: Offer 
incentive 𝑖 or not

𝑐𝑖
𝑛 Cost of offering incentive 𝑖 to 

driver 𝑛

𝑝𝑖
𝒓,𝑛 [1]

Prob of selecting route 𝒓 after 
offering incentive 𝑖

𝛽𝒓,𝑡 [2]
Location of driver on route 𝒓
at time 𝑡 (Probability vector)

[1] Chenfeng Xiong, Mehrdad Shahabi, Jun Zhao, Yafeng Yin, Xuesong Zhou, and Lei Zhang. An integrated and personalized traveler information and incentive scheme for energy efficient mobility systems. 

Transportation Research Part C: Emerging Technologies, 2019.

[2] Wei Ma and Zhen Sean Qian. Estimating multi-year 24/7 origin-destination demand using high-granular multi-source traffic data. Transportation Research Part C: Emerging Technologies, 96:96–121, 2018.
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Modifying the Simple Model
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Set of drivers

Set of incentives for driver n

𝑠𝑖
𝑛 ∈ 0,1 ,

Decision variable: Offer 
incentive 𝑖 or not

𝑐𝑖
𝑛 Cost of offering incentive 𝑖 to 

driver 𝑛

𝑝𝑖
𝒓,𝑛 Prob of selecting route 𝒓 after 

offering incentive 𝑖

𝛽𝒓,𝑡
Location of driver on route 𝒓
at time 𝑡 (Probability vector)

Sum utility (simple case)

Expected travel time of driver 𝑛 after offering incentive 𝑖
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