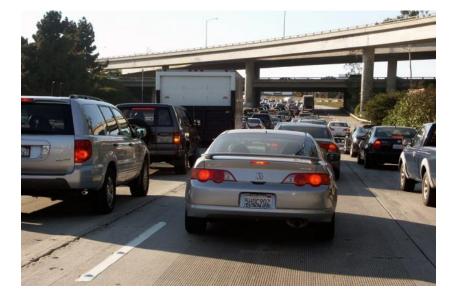


METRANS SEMINAR

Cost-Sharing Mechanisms for Ride-Sharing

Dr. Maged M. Dessouky Shichun Hu


Dr. Nelson A. Uhan

Dr. Phebe Vayanos

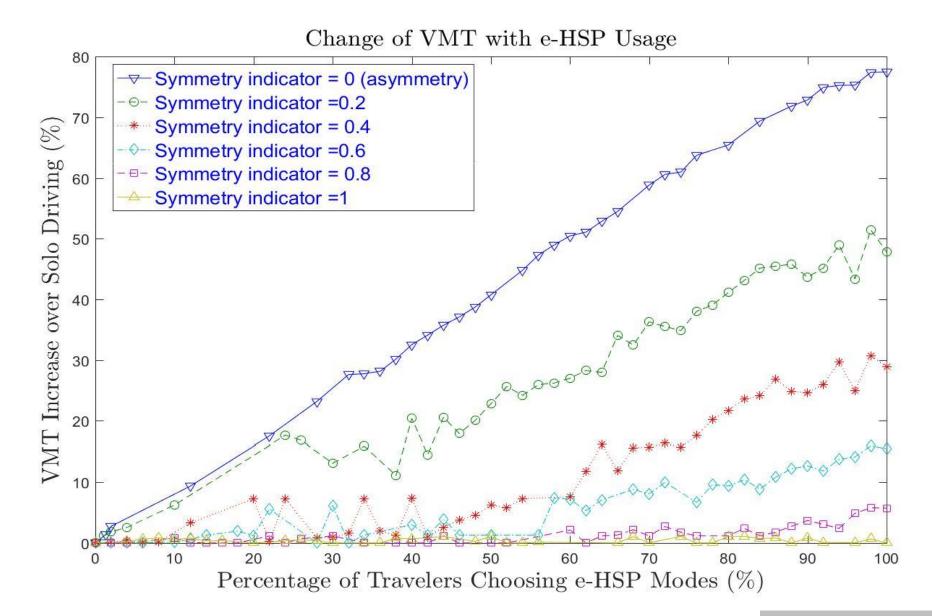
2020.10.22

MOTIVATION & BACKGROUND

- According to the U.S. Department of Transportation more than 10% of the GDP is related to transportation activity
- The 2019 Urban Mobility report estimates the cost of congestion in the US to be on the order of \$160 billion or \$960 per commuter and 7 billion hours in delayed time
- There exists a significant amount of unused capacity in the transportation network
- Emerging information technologies have made available a wealth of real-time and dynamic data about traffic conditions
 - GPS systems both in vehicles/phones
 - ➤ interconnected data systems
 - ➢ on-board computers

OPPORTUNITIES for RIDE-SHARING

- Ride-sharing is a joint-trip of more than two participants that share a vehicle and requires coordination with respect to itineraries and time
- Unorganized ride-sharing
 - ➢ Family, colleagues, neighbors
 - ➢ Hitchhiking
 - > Slugging
- Organized ride-sharing
 - > Matching of driver and rider
 - ➤ Can require
 - Service operators
 - Matching agencies
 - Cost-sharing systems (Carma, Flinc)
 - Revenue maximizing systems (Uber, Lyft, DiDi, etc)



USCViter

IMPACT of TNCs on CONGESTION

- Shifts mode from environmentally friendly modes
 - 2018 Schaller Report survey of TNC users 60% would have used public transit, biked, or walked and 40% would have used either a taxi or personal vehicle
 - 2019 University of Kentucky Report more than half of the 62% increase in weekday traffic delays between 2010 and 2016 due to Uber and Lyft trips
- Causes extra deadhead miles to pickup customers up to 20% of the trip in SF and 50% in NYC (LA Times, 2019)
- Overall, Schaller reports that TNCs have added 5.7 billion VMT annually in total for nine large metro areas
- Less time driving searching for parking and car ownership

USCViterb

RIDE-SHARING CHALLENGES & RESEARCH

EX	EXAMPLES: High-dimensional Matching				
Ric	de preferences have dimensions				
•	Type of vehicle Cost				
•	Flexibility of route Travel time				
•	Gender				
So	oftware assistants can help with				
•	How to balance different criteria				
•	Multiple rides for a trip				
•	Transfer points				
■	Which routes to take to maximize possibility of ride-				
	sharing				

High-dimensional Matching Trust and Reputation Mechanism Design Routing Network Congestion Effects and

Computational Planning Tools

RIDE-SHARING CHALLENGES & RESEARCH

EXAMPLES: Trust and Reputation

Implementation of large scale word of mouth systems

(reputation systems)

- Used in Carma, Carpool World, Goloco
 - ➢ New users
 - Bias toward positive comments (retaliation threat)

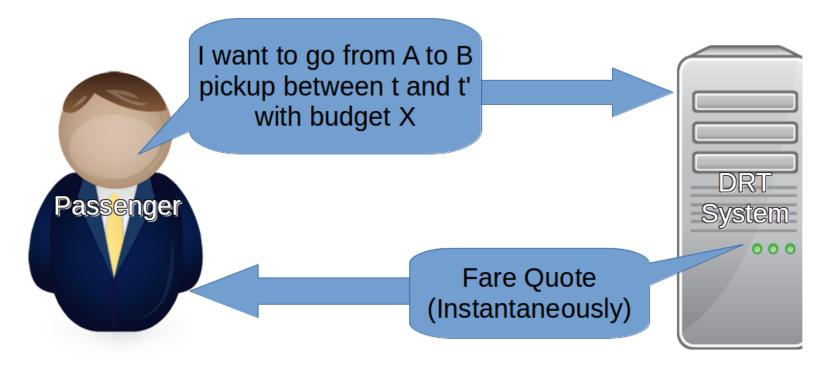
Escrow Mechanisms

- Intermediary that forwards payment and collects feedback
- Issues with incentive compatability, efficiency.

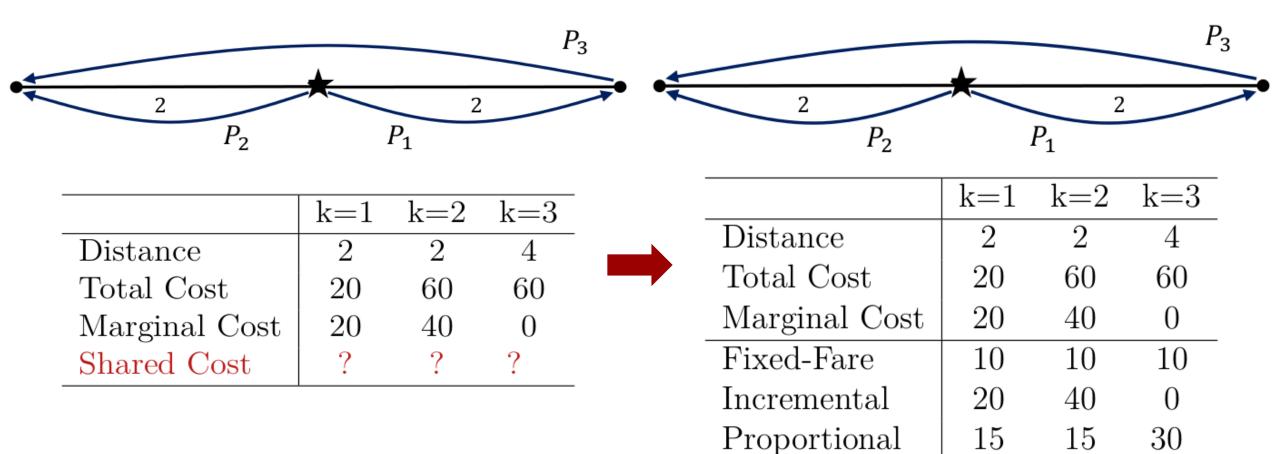
Use of Social Networking Sites (SNS)

- Get to know the driver/rider
- ZimRide, Carma, Carticipate

RESEARCH AREAS


High-dimensional Matching Trust and Reputation Mechanism Design Routing Network Congestion Effects and

Computational Planning Tools



OUR SETTING

- Share the ride costs fairly and without any subsidies.
- Make sure passengers have no reason to drop out after accepting their fare quote.
- Motivate passengers to submit requests early. This allows the system to maximize serviced passengers.

AN EXAMPLE

DESIRABLE PROPERTIES

ONLINE FAIRNESS

The costs per distance unit are monotonically nonincreasing (in

passengers' arrival order).

EX-POST INCENTIVE COMPATIBILITY

The best strategy of every passenger is to arrive truthfully

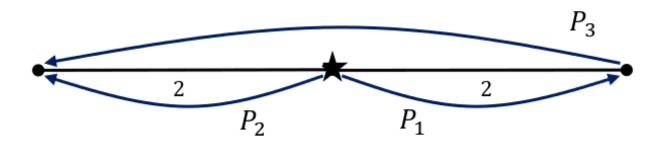
(provided that all other passengers arrive truthfully and none change whether they accept).

IMMEDIATE RESPONSE

The passengers' costs are monotonically nonincreasing (in time).

BUDGET BALANCE

The total cost is shared by all (serviced) passengers.


INDIVIDUAL RATIONALITY

The shared costs of passengers who accepted their initial quotes

should never exceed their willingness-to-pay-level.

DESIRABLE PROPERTIES

	k=1	k=2	k=3
Distance	2	2	4
Total Cost	20	60	60
Marginal Cost	20	40	0
Fixed-Fare	10	10	10
Incremental	20	40	0
Proportional	15	15	30

- ✗ Budget balance (e.g., Fixed-Fare)
- X Immediate response (e.g., Proportional)
- X Online fairness(e.g., Incremental)

POCS MECHANISM

- Proportional Online Cost-Sharing is a mechanism that provides low fare quotes to passengers directly after they submit ride requests and calculates their actual fares directly before their rides.
- POCS calculates shared-costs by:

$$cost_{\pi(k)}^{t} := \alpha_{\pi(k)} \min_{k \le j \le t} \max_{1 \le i \le j} \underbrace{\frac{\sum_{l=i}^{j} mc_{\pi(l)}}{\sum_{l=i}^{j} \alpha_{\pi(l)}}}_{ccpa_{\pi(i,j)}}$$

- POCS is a mix of
 - marginal cost-sharing (with respect to coalitions)
 - ➢ proportional cost-sharing (with respect to passengers within a coalition)

THE FRAMEWORK

Total Cost =	Driver's Direct Cost F	+	Total Detour Cost
Total Shared Cost =	Shared Cost of F	+	Shared Cost of the Total Detour
	 Any sub-mechanism Propose 3 mechanisms 		Any sub-mechanismUse POCS for now

• New Properties Identified

- -Reduced Burden for the First Passenger Property. In the initial quote for the first passenger, its shared cost of the driver's direct cost < F.
- -Fairness in Sharing Driver's Cost Property. The final share of the driver's direct cost paid by the passengers should be proportional to their demand.
- The Ride-Sharing Mechanism Framework (RSMF) constrains the sub-mechanisms for sharing the cost of F to satisfy the new properties.

THE MECHANISM IN DETAIL

DRIVER-OUT-OF-COALITION

+

Total Shared Cost =

Shared Cost of F

Shared Cost of the Total Detour

HOW TO SHARE THE COST F

- Share proportionally to passengers' demand
- Driver is out of the coalition in sharing F

- Pros:
 - all five original desirable properties are satisfied
 - Fairness in Sharing Driver's Cost property holds -
- Cons:
 - fails to reduce the burden of the 1st passenger

they contradict with each other under certain circumstances

THE MECHANISM IN DETAIL DRIVER-IN-COALITION

+

Total Shared Cost =

Shared Cost of F

Shared Cost of the Total Detour

HOW TO SHARE THE COST F

- Share proportionally to passengers' demand
- Driver is in the coalition in sharing F
- Pros:
 - all five original desirable properties are satisfied
 - Fairness in Sharing Driver's Cost property holds
 - Reduced Burden for the First Passenger property holds
- Cons:
 - the driver's cost is not fully recovered

PASSENGERS PREDICTING

THE MECHANISM IN DETAIL

Total Shared Cost =

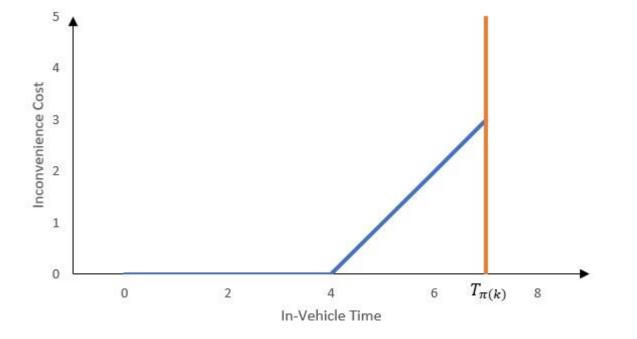
Shared Cost of F

Shared Cost of the Total Detour

HOW TO SHARE THE COST F

• Predict the total number of passengers by adapting a robust optimization method (Bandi et al. 2015, 2018)

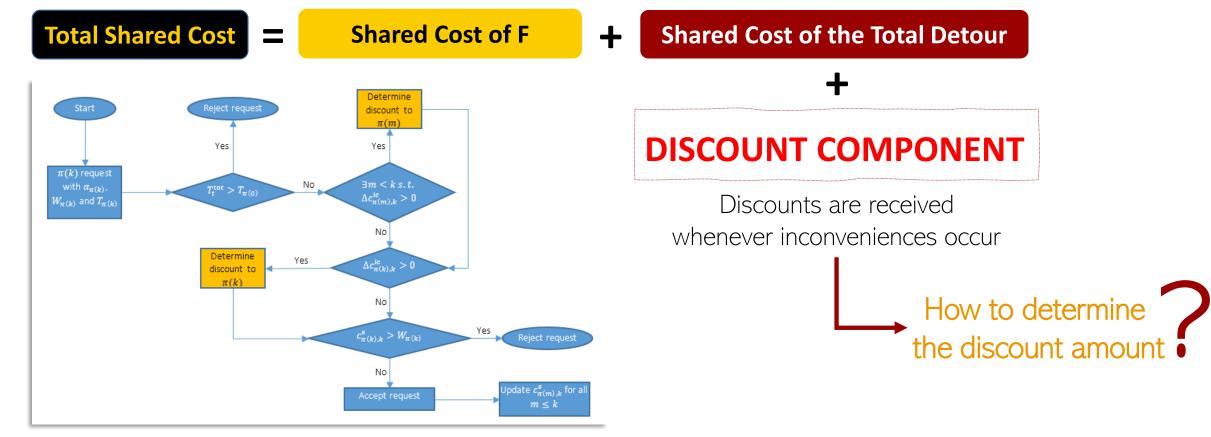
+


• A passenger's share of the driver's direct cost $= F \times \frac{passenger's demand}{total demand of the estimated passengers}$

• Pros:

- four of the five original desirable properties are satisfied
- Fairness in Sharing Driver's Cost property holds
- Reduced Burden for the First Passenger property holds
- Cons:
 - the Budget Balance property is lost (increase prediction accuracy can mitigate this issue)

RIDE-SHARING with TIME CONSTRAINTS



WHAT'S DIFFERENT?

- Drivers and passengers have a limit of how much time they want to spend in the vehicle.
- We use an inconvenience cost function to measure delays past their time window

RIDE-SHARING with TIME CONSTRAINTS

RIDE-SHARING with TIME CONSTRAINTS

Basic Discount

The new passenger is responsible for all inconvenience costs of previous passengers

Pros:

- three of the five original desirable properties are satisfied
- Fairness in Sharing Driver's Cost property holds
- Reduced Burden for the First Passenger property holds
- Passengers are not responsible for the inconveniences costs that are not caused by themselves
- Cons:
 - the Online Fairness property is lost
 - the Ex-Post Incentive Compatibility property is lost

Inconvenience Cost Based Discount

Passengers form coalitions to share the inconvenience costs

• Pros:

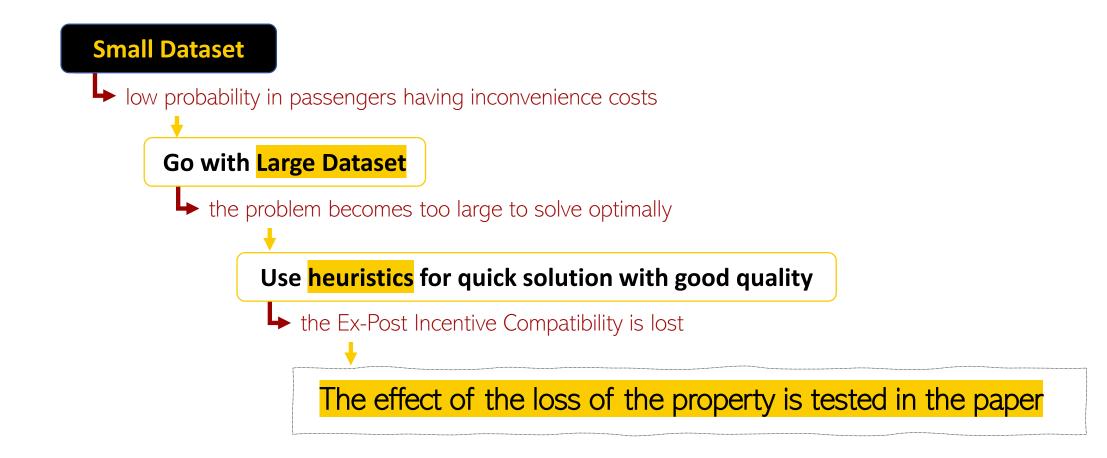
- four of the five original desirable properties are satisfied
- Fairness in Sharing Driver's Cost property holds
- Reduced Burden for the First Passenger property holds
- Cons:
 - the Online Fairness property is lost
 - passengers with high tolerance for time may not get any discounts while being responsible for part of the total inconvenience cost
 - requires more memory and time in simulation

MECHANISM WITHOUT DISCOUNT

- Randomly generated data set on 40*40 grid
- Each replication has **1 vehicle and 4 passengers**
- Cost per mile is \$1
- Clustered spatial pattern, origins (destinations)
 are generated within a 10*10 grid at the bottom
 left (top right) corner
- Results are averaged over 100 replications

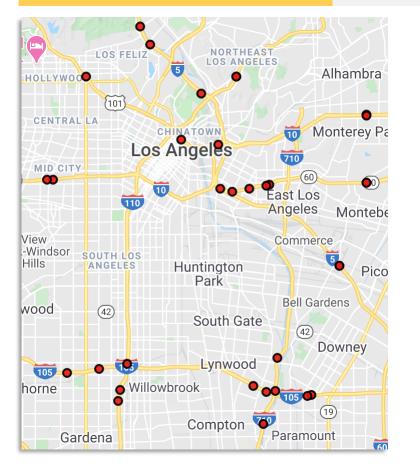
MECHANISM WITHOUT DISCOUNT

Table 1 Average Performance Measures for the Different Mechanisms				
Mechanisms	DooC	\mathbf{DiC}	\mathbf{PP}	
Total Cost of the Operation	69.61	69.61	69.61	
Driver's Direct Trip Cost	42.46	42.46	42.46	
Average Passenger Cost	17.40	15.26	17.17	
% of Absolute Budget Balance Error	0	0	2.2	
% of Driver's Cost Recovered	100	80.01	97.79	
% of Reduced Burden for the First Passenger	0	39.91	60.05	


INSIGHTS

- Supports theoretical analysis
- DiC produces the lowest average passenger cost
- DooC recovers all of the driver's cost
- PP balances the driver and passengers' costs

Choose PP mechanism for sharing F for further experiments in comparing the discount methods



MECHANISM WITH DISCOUNT

MECHANISM WITH DISCOUNT

DATASET

- Road sensor data by LA Metro (archived by USC researchers)
- ⊘ LA county region including 33 sensors on 7 freeways
- Generate origin-destination (OD) probability matrix using the sensor data
- \odot OD generated **randomly** using the OD probability matrix

MECHANISM WITH DISCOUNT

Table 2 Simulation Settings for the Different Scenarios						
Scenarios Number of Requests Number of Drivers Time Limit W-factor						
1	1000	300	1.5T	2		
2	1000	300	2T	2		
3	1000	500	1.5T	2		
4	1000	300	1.5T	1.5		
5	1000	300	1.5T	3		

- ⊘ Average vehicle speed: 36 mph
- Each passenger has different linear function value of in-vehicle time
- Maximum in-vehicle time is set to be either 1.5 or 2 times their direct travel time
- Each passenger has a willingness-to-pay-level of 1.5, 2 or 3 times
 (W-factor) the passengers' direct cost
- The system has 1,000 passenger requests and 300 or 500 ridesharing drivers
- \bigcirc Results are averaged over 100 replications

MECHANISM WITH DISCOUNT

Table 4 Average Performance Measures for the Discount Methods in Scenario 1						
Mechanisms	No Discount	ICBD	Basic Discount			
Driver's Direct Trip Cost	7.33	7.33	7.33			
Total Operation Cost per Vehicle	9.54	9.82	9.65			
Shared Cost Per Passenger	3.10	3.33	3.19			
Shared Cost Per Driver	2.72	2.48	2.48			
% of Requests Served	74.67	71.86	75.76			
# of No-Passenger Vehicles	87.34	46.23	62.03			

 Table 5
 Average Performance Measures for the Discount Methods in Scenario 2

Mechanisms	No Discount	ICBD	Basic Discount
Driver's Direct Trip Cost	7.30	7.30	7.30
Total Operation Cost per Vehicle	11.27	11.87	11.35
Shared Cost Per Passenger	3.10	3.40	3.15
Shared Cost Per Driver	2.75	2.43	2.42
% of Requests Served	91.89	86.40	90.95
# of No-Passenger Vehicles	85.7	29.49	51.54

METRANS SEMINAR | DESSOUKY & HU 2020.10

USC Viterb

MECHANISM WITH DISCOUNT

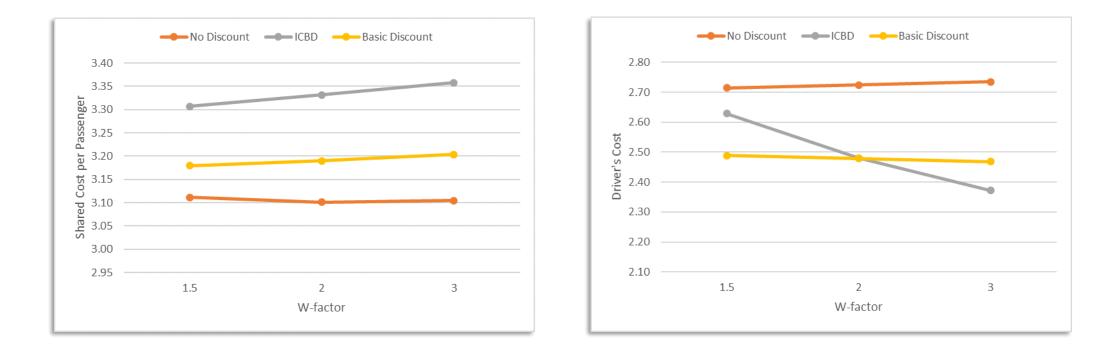
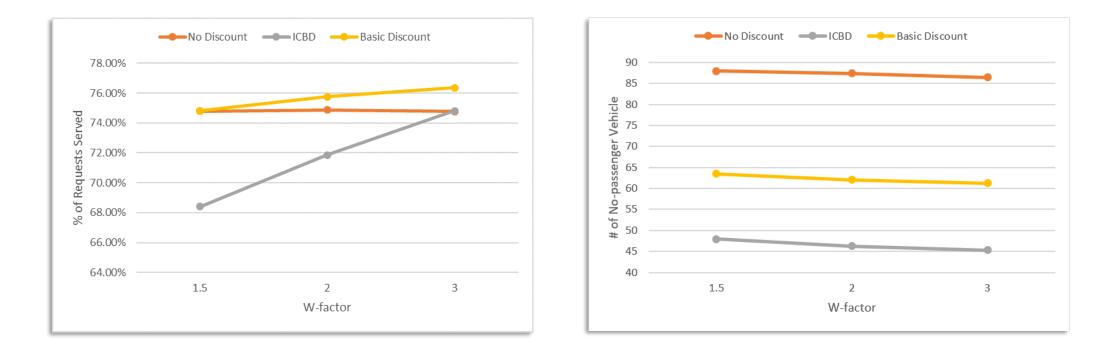

Table 4 Average Performance Measures for the Discount Methods in Scenario 1						
Mechanisms	No Discount	ICBD	Basic Discount			
Driver's Direct Trip Cost	7.33	7.33	7.33			
Total Operation Cost per Vehicle	9.54	9.82	9.65			
Shared Cost Per Passenger	3.10	3.33	3.19			
Shared Cost Per Driver	2.72	2.48	2.48			
% of Requests Served	74.67	71.86	75.76			
# of No-Passenger Vehicles	87.34	46.23	62.03			

 Table 6
 Average Performance Measures for the Discount Methods in Scenario 3

Mechanisms	No Discount	ICBD	Basic Discount
Driver's Direct Trip Cost	7.33	7.33	7.33
Total Operation Cost per Vehicle	8.74	9.17	8.88
Shared Cost Per Passenger	3.16	3.46	3.28
Shared Cost Per Driver	3.70	3.24	3.38
% of Requests Served	90.89	90.67	91.63
# of No-Passenger Vehicles	208.29	115.97	115.00


USC Viterbi

MECHANISM WITH DISCOUNT

The effect of willingness-to-pay-level on passengers' cost and drivers' cost

MECHANISM WITH DISCOUNT

The effect of willingness-to-pay-level on % served and # of no-passenger vehicles

CONCLUSION

WHAT HAVE WE DONE

 Developed RSMF for designing cost-sharing mechanisms in ride-sharing

Ø Modular

- Caters to different requirements
- Proposed 3 mechanisms in detail
 - PP mechanism balances driver cost with passenger cost
- Developed 2 discount methods
 - BD outperforms ICBD in shared cost per passenger and number of requests served
 - ICBD leads to a more distributed system

FUTURE DIRECTIONS...

- Develop cost-sharing mechanisms for the dynamic case
- Develop a dynamic ride-sharing routing method
- Combine the cost-sharing mechanisms and the routing method in the dynamic case and test their performances

USCViterb

REFERENCE

Agatz, N.A.H., Erera, A., Savelsbergh, M.W.P., Wang, X., 2011. Dynamic ride-sharing: a simulation study in metro atlanta. Transportation Reserch Part B, Methodological 45 (9), 1450–1464.

Agatz, N.A.H., Erera, A., Savelsbergh, M.W.P., Wang, X., 2012. Optimization for dynamic ride-sharing: a review. European Journal of Operational Research 223, 295–303.

Bandi C, Bertsimas D, Youssef N (2015) Robust queueing theory. Operations Research63(3):676–700.

Bandi C, Trichakis N, Vayanos P (2018) Robust multiclass queuing theory for wait time estimation inresource allocation systems. Management Science65(1):152–187.

Berbeglia, G., Cordeau, J.F., Laporte, G., 2010. Dynamic pickup and delivery problems. European journal of operational research, 202(1), pp.8-15.

Chan N., Shaheen S.A., 2012. ride-sharing in North America: past, present, and future. Transport Reviews 32, 93-112.

Frisk, M., Göthe-Lundgren, M., Jörnsten, K., Rönnqvist, M., 2010. Cost allocation in collaborative forest transportation. European Journal of Operational Research, 205(2), pp.448-458.

Furuhata, M., Dessouky, M., Ordonez, F., Brunet, M., Wang, X., Koenig, S., 2013. ride-sharing: the state-of-the-art and future directions. Transportation Research Part B: Methodological 57, 28–46.

Furuhata, M., Daniel, K., Koenig, S., Ordonez, F., Dessouky, M., Brunet, M.E., Cohen, L., Wang, X., 2015. Online cost-sharing mechanism design for demand-responsive transport systems. IEEE Transactions on Intelligent Transportation Systems, 16(2), pp.692-707.

Geisberger, R., Luxen, D., Neubauer, S., Sanders, P., Volker, L., 2010. Fast detour computation for ride sharing. In: Erlebach, Thomas, Lübbecke, Marco, (Eds.), Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, OpenAccess Series in Informatics (OASIcs), vol. 14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 88–99.

Ghoseiri, K., Haghani, A., Hamedi, M., 2011. Real-time rideshare matching problem. University of Maryland, Department of Civil and Environmental Engineering, UMD-2009-05.

Huang, S.C., Jiau, M.K., Lin, C.H., 2015. A genetic-algorithm-based approach to solve carpool service problems in cloud computing. IEEE Transactions on intelligent transportation systems, 16(1), pp.352-364.

Kelley, K., 2007. Casual carpooling-enhanced. Journal of Public Transportation 10, 119–130.

Kleiner, A., Nebel, B., Ziparo, V.A., 2011, June. A mechanism for dynamic ride sharing based on parallel auctions. In Twenty-Second International Joint Conference on Artificial Intelligence.

Morency, C., 2007. The ambivalence of ride-sharing. Transportation 34, 239–253.

Sayarshad, H.R., Chow, J.Y., 2015. A scalable non-myopic dynamic dial-a-ride and pricing problem. Transportation Research Part B: Methodological, 81, pp.539-554.

Wang, X., Dessouky, M., Ordonez, F., 2016. A pickup and delivery problem for ride-sharing considering congestion. Transportation letters, 8(5), pp.259-269.