METRANS International Urban Freight Conference | 26th May 2022

An optimal configuration for the Micro-hubs and Cargo bikes for last mile freight delivery:

Results from the comparative analysis of the developed model

Presenter: Mehrab Khan, PhD Student Co-authors: Dr. Carina Thaller, Prof. Gernot Liedtke

German Aerospace Center (DLR) Institute of Transport Research Berlin, Germany

Knowledge for Tomorrow

Agenda/ Outline

- Introduction
 Scope in urban freight Transport
 State of Art

 Motivation, Research Gap and Questions

 Problem Formulation
- Developed LRP Model
- Results from the comparative analysis
- Conclusion

Introduction

Share of urban freight transport in overall urban transport in Europe

Share of trips of urban freight transport 15% (10-20%)

Share of km of urban freight transport 20% (15-25%)

Share of fuel consumption and emissions of urban freight transport

30% (20-40%)

2030 base case scenario **Delivery vehicles Emissions** Congestion Million vehicles Million tonnes CO2 Average commute,* minutes - +6 Mt 7.2 Parcel Freight 2030 2019 2030 2019 2030 2019 * Average commute for representative city NOTE: Top 100 cities globally only.

Source: World Economic forum Report, 2020

Source: Cycle Logistics Report (Europe), 2019

Less traffic, noise and GHG emissions

More public space

Scope in Urban Freight Transport

Last Mile Freight Transport

CEP (Courier, Express and Parcel) services

Source: Maes J. (2011)

State of Art

Study	Scope	Results		
Verlinde et al. (2014)	Pilot Study: 1 Mobile depot + 4 electric cargo bikes	24% reduction in CO2 emission (kg) 59% reduction in PM2.5 emission (gm) 72% reduction in Spatial consumption on road Transport cost <i>doubled</i>		
Navarro et al. (2014)	Pilot Study: 1 micro-hubs+ 2 freight cycles	Saving in fuel consumption: 400 l/month Reduction in distance travelled : 64 km/month		
Neils et al. (2018)	Pilot Study: Truck trailer + cargo bike	Saving of CO2 emission: 7.5 tons per year Reduction in distance travelled: 135 km/ day		
Nürnberg et al. (2019)	Cargo bikes	Lack of suitable bicycle infrastructure hinders the advantage of cargo bikes		
Allen et al. (2000)	Cargo bikes	87% of the total time of delivery of goods is spent in search of parking space for long distance delivery without consolidation points		
Brown et al. (2011)	Pilot Study : Micro-hubs+ 6 e-cargo tricycle and 3 e-vans	Reduction in CO2 emission (kg): 54% Spatial consumption on road reduced by 56%		
Arvidsson et al. (2018)	Trial Study: Freight Bus+ electric cargo bikes	24% increase in transport cost		
Arnold et.al (2018)	Distribution points + cargo bikes	134% increase in delivery time 9% increase in operational cost 40% decrease in external cost		
Gruber et al. (2014)	Cargo bikes	48% of trips by motorised vans can be substituted by cargo bikes		

Motivation, Research Gap and Questions

Motivation

Potential to be an economically and environmentally feasible and viable in last mile freight delivery

Research Gap and learnings from previous studies

Research mostly focused on trials/ pilot studies

- Trials not applicable in generalized scenario
- Random selection of location for micro-hubs
- Lack of proper configurations of vehicles used
- Uncertain economic viability
- Lack of proper Implementation Framework for LSPs/ City Planners

Research Questions?

 How can the logistics setting using cargo bikes and micro-hubs be framed in a existing scenario?

Problem Formulation

Optimal Network Configuration

- Optimal location of micro-hubs
- Optimal number of micro-hubs

Location Model for micro-hubs

- Optimal number of cargo bikes
- Routing configuration

Vehicle Routing Model

Location- Routing problem (LRP)

$$\sum_{j \in I} f_j.X_j + \sum_{i \in I} \sum_{i \in I} \sum_{k \in K} c_{ij}.Y_{ijk}$$

facility cost

Transport cost

Potential micro.hubs

$$(X,Y) = \left(\frac{\sum_{i \in I} x_i}{n_I}, \frac{\sum_{i \in I} y_i i}{n_I}\right)$$

Assigned micro-hubs

Unassigned microhubs

Opened micro-hubs

Un-opened micro-hubs

Comparative Results with others algorithms in Literature

Instances: no. cust X no. Dept	GRASP (Prins et al. 2006)	LRGTS (Prins et al. 2007)	CH (Barreto et al. 2007)	Proposed algorithm	Min. no. Of vehicles	Min. no. of depots
Christ69–50×5	599.1	586.4	582.7	465.768	6	5
Christ69–75×10	861.6	863.5	886.3	761.523	6	7
Christ69–100×10	861.6	842.9	889.4	842	11	7
Gaskell67–21×5	424.9	424.9	435.9	411.11	3	2
Gaskell67–22×5	585.1	587.4	591.5	589	3	2
Gaskell67–29×5	515.1	512.1	512.1	519	3	2
Gaskell67–32×5	571.9	587.4	571.7	560.11	4	3
Gaskell67–36×5	460.4	476.5	470.7	399.592	4	3
Min92–27×5	3062	3065.2	3062	3062	6	3
Min92-134×8	5965.1	-	6238	5118.219	11	8

Fig: Result of initial solution

Source: own

Conclusion and remarks

- Micro-hubs together with smaller vehicles, such as cargo-bikes could be a feasible solution to last-mile delivery, when the configuration of their network is optimal.
- The developed model results for optimal solution when compared with previous known literatures of LRP
- Initial results from the developed model shows optimal results but can be improved further
- However, the developed model needs to be assured for larger instances of data

Problem Size for the study

Potential location: 2,020, capacitated, opening cost f_i

Customers: over 220,000 demand hi

Vehicles: infinite fleet, capacity u, total transport cost as c_{ii} (fixed+variable)

Available data:

• Customer georeferenced points

Potential UCC georeferenced points

Generation of demand randomly for a given day

Fleet characteristics in xml

Source: own

Thank you for your attention!

Mehrab Khan, PhD Student

German Aerospace Center (DLR) Institute of Transport Research Berlin, Germany

Telephone: +49 30 67055 8022 Email: mehrab.khan@dlr.de

