Co-Simulation Based Optimization for Container Pickup and Delivery

Presenter: Dr. Maged Dessouky

Co-Authors: Siyuan Yao and Petros Ioannou

Daniel J. Epstein Department of Industrial and System Engineering, University of Southern California

May. 23 2022
Outline

1. Background
2. Literature Review
3. Mathematical Model
4. Methodology
5. Experimental Analysis
6. Conclusion
Background

Increasing Demand in Sea Transportation

- In 2021, Ports of Los Angeles and Long Beach handled about 20 million TEUs.

![Annual Container Statistics of POLA/LB](image)

Figure 1. San Pedro Bay Area Container Statistics
Suppose 40% of the containers were carried by rail; there are still about 10 thousand units of containers that needs to be transported daily in San Pedro Bay area, causing traffic congestion and air pollution. Therefore, how to manage freight traffic efficiently in urban centers is an urgent issue.

Figure 2. Traffic Congestions on I-710 and I-5
Outline

1. Background
2. Literature Review
3. Mathematical Model
4. Methodology
5. Experimental Analysis
6. Conclusion
• Literature Review

This study focuses on the regional container pickup and delivery problem with predetermined supply and demand on a flow-dependent dynamic transportation network.

Topics related to freight operation problems:

1. Multi-Commodity Network Flow
 Dorneles et al., 2017; Fakhri and Ghaee, 2014; Kuiteing et al., 2018; Letchford and Salazar-González, 2015; Masri et al., 2015; Moradi et al., 2015

2. System Optimal Dynamic Traffic Assignment
 Peeta and Mahmassani, 1995; Shen et al., 2006; Zhang and Qian, 2020

3. Simulation Models
 Mahmassani, 2001; Mahmassani et al., 2007; Zhou et al., 2008

4. Load-Balancing Approaches
 Abadi et al., 2016; Zhao et al., 2018; Chen et al., 2021

Research Gap & Contribution

1. Introduce traffic simulator into traditional optimization loop to better approximate network dynamics caused by traffic flows.

2. Enable truck reuse by extending load-balancing approach with touring
Outline

1. Background
2. Literature Review
3. Mathematical Model
4. Methodology
5. Experimental Analysis
6. Conclusion
Mathematical Model

Model Assumptions

The problem is defined on a transportation network $G = (N, A)$.

The demand $(d_{i,j})$ from location i to j is predetermined, which needs to be satisfied by the end of the day.

All the trucks start from the depot (with the location index 0) and return to the depot by the end of the day.

The study horizon is discretized into $|K|$ intervals.

Terminologies:

(1) *trip* is defined as a truck going from one location to another;

(2) *truck routing* represents the routing decision (which roads to travel on) for a trip;

(3) *truck touring* represents the sequence of trips for trucks in the study horizon;

(4) *delivery flows* are the aggregated truck trips carrying containers;

(5) *pickup flows* are the aggregated truck trips without carrying containers.
• Mathematical Model

Notation

\(a \) The index of the arcs set, \(a \in A \);
\(k \) The index of the time interval, \(k \in K \);
\(d_{i,j} \) The demand from location \(i \) to location \(j \) in number of containers, \(i, j \in N \);
\(R_{i,j} \) The candidate route set for location \(i \) to \(j \) with index \(r \);
\(x_{i,j,k}^r \) The delivery flow from location \(i \) to location \(j \) using route \(r \) leaving at time \(k \);
\(y_{i,j,k}^r \) The pickup flow from location \(i \) to location \(j \) using route \(r \) leaving at time \(k \);
\(c_{i,j,k}^r \) The travel cost from location \(i \) to \(j \) using route \(r \) leaving at time \(k \), \(r \in R_{i,j} \);
\(\lambda \) The weighting factor for the travel cost and the truck cost;
\(p_{i,k} \) The delivery flow leaving location \(i \) at time \(k \);
\(q_{j,k} \) The cumulative delivery flow that has arrived at location \(j \) by time \(k \);
Mathematical Model

Pickup and Delivery Problem with Dynamic Transportation Network (PDPDTN)

\[
\begin{align*}
\text{minimize} & \quad \lambda \sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} \sum_{k \in \mathcal{K}} y_{i,j,k}^T + \sum_{j \in \mathcal{N}} \sum_{i \in \mathcal{N}} \sum_{k \in \mathcal{K}} x_{i,j,k}^T \cdot c_{i,j,k}^T + \sum_{j \in \mathcal{N}} \sum_{i \in \mathcal{N}} \sum_{k \in \mathcal{K}} y_{j,i,k}^T \cdot c_{j,i,k}^T \\
\text{subject to} & \\
& \quad d_{i,j} = \sum_{k \in \mathcal{K}} \sum_{r \in \mathcal{R}_{ij}} x_{i,j,k}^T \quad \forall i \in \mathcal{N}, j \in \mathcal{N} \\
& \quad p_{i,k} = \sum_{r \in \mathcal{R}_{i}} x_{i,j,k}^T \quad \forall i \in \mathcal{N}\setminus\{0\}, k \in \mathcal{K} \\
& \quad q_{j,k} = \sum_{i \in \mathcal{N}} \sum_{r \in \mathcal{R}_{ij}} x_{i,j,k}^T \cdot \phi_{i,j,r,k}^T \quad \forall j \in \mathcal{N}\setminus\{0\}, k \in \mathcal{K} \\
& \quad q_{j,k} \geq \sum_{\tau \in \mathcal{R}} \sum_{i \in \mathcal{N}} \sum_{r \in \mathcal{R}_{ij}} y_{j,i,\tau}^T = \sum_{\tau \in \mathcal{R}} \sum_{i \in \mathcal{N}} \sum_{r \in \mathcal{R}_{ij}} y_{j,i,\tau}^T \cdot \phi_{j,i,\tau,k}^T \quad \forall j \in \mathcal{N}\setminus\{0\}, k \in \mathcal{K} \\
& \quad \sum_{r \in \mathcal{R}} \sum_{i \in \mathcal{N}} \sum_{k \in \mathcal{K}} y_{j,i,\tau}^T = \sum_{i \in \mathcal{N}\setminus\{0\}} \sum_{k \in \mathcal{K}} \sum_{r \in \mathcal{R}_{i,j}} y_{0,i,k}^T \\
& \quad x_{i,j,k}^T \in \mathbb{Z}^0^+ \quad \forall i \in \mathcal{N}, j \in \mathcal{N}, k \in \mathcal{K}, r \in \mathcal{R}_{i,j} \\
& \quad y_{i,j,k}^T \in \mathbb{Z}^0^+ \quad \forall i \in \mathcal{N}, j \in \mathcal{N}, k \in \mathcal{K}, r \in \mathcal{R}_{i,j}
\end{align*}
\]

Truck employment costs + travel costs

Demand constraint

Flow conservation constraints

Domain constraints
• Mathematical Model

Due to the complexity of the transportation network and the nonlinear relationship between the traffic flows and the network conditions, it is hard to explicitly express the binary indicators $\phi_{i,j,\tau,k}$ and $\bar{\phi}_{j,i,\tau,k}$. Therefore, instead of using analytical expressions for these functions, we use simulation models to approximate transportation network states.

Remark:
$\phi_{i,j,\tau,k} = 1$ if and only if the delivery flow from i to j leaving at time τ with route r is available for another delivery task at time k.
$\bar{\phi}_{j,i,\tau,k} = 1$ if and only if the pickup flow from i to j leaving at time τ with route r is available for another delivery task at time k.
Outline

1. Background
2. Literature Review
3. Mathematical Model
4. Methodology
5. Experimental Analysis
6. Conclusion
Methodology

Problem Decomposition:

- **SP1**
 - finding the least-cost flows for a DTA problem
 - We only solve the delivery flows \((x^T_{i,j,k}) \) in the dynamic transportation network.

- **SP2**
 - finding the minimum cost pickup flows for current delivery flows
 - Based on the delivery flow solution, we find the best pickup flow solution \((y^T_{i,j,k}) \) that can support the delivery flow solution.
• Methodology

Solution Framework
• Methodology

Load Balancing Process

The intuition for the Load Balancing Process is to distribute demand across the transportation network over the study horizon, ensuring no single set of paths bears too much demand.

Single Path

Multiple Paths & Time Interval

Multiple Paths
• Methodology

Pickup Flow Optimization

The intuition for the Pickup Flow Optimization is the following:

Phase 1: Load Balancing Process

Phase 2: Pickup Flow Optimization
• Methodology

Data Flow in the Framework
Outline

1. Background
2. Literature Review
3. Mathematical Model
4. Methodology
5. Experimental Analysis
6. Conclusion
Experimental Analysis

Study Area

Parameters

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Parameter value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily horizon</td>
<td>10 hours</td>
</tr>
<tr>
<td>Time interval</td>
<td>15 minutes</td>
</tr>
<tr>
<td>Ports’ service time</td>
<td>1 hour</td>
</tr>
<tr>
<td>Warehouses’ service time</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Weighting factor λ</td>
<td>50/truck</td>
</tr>
<tr>
<td>Stopping threshold ϵ</td>
<td>100</td>
</tr>
<tr>
<td>Maximum running time T_{cap}</td>
<td>8 hours</td>
</tr>
</tbody>
</table>

Most of the parameters are learned from Zhao et al., (2018) and adjusted based on our dataset from Giuliano et al., (2021).

Stopping Criteria:
(1) the maximum running time (T_{cap}) is reached;
(2) the difference of the system costs between two iterations is smaller than a threshold (ϵ).
• Experimental Analysis

Testing Platform

(1) Traffic simulator: Visum 17

(2) Programming Language Python 3.6

(3) Solver Gurobi 9.1.2

(4) Hardware a virtual machine with 8-core 3.70 GHz CPU and 16 GB of memory

Solution Approaches:

Approach 1: Only use Load Balancing Process to solve the problem;
Approach 2: Optimize Pickup flow once after getting solution from the Load Balancing Process;
Approach 3: Iteratively solve the problem using the framework.
Experimental Analysis

Numerical Results

<table>
<thead>
<tr>
<th>Demand</th>
<th>Approach 1</th>
<th></th>
<th>Approach 2</th>
<th></th>
<th>Approach 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Trips Leaving the Depot</td>
<td>Truck Travel Distance (mi)</td>
<td>Truck Travel Time (hr)</td>
<td>Number of Trips Leaving the Depot</td>
<td>Truck Travel Distance (mi)</td>
</tr>
<tr>
<td>13000</td>
<td>13000</td>
<td>294739</td>
<td>6464</td>
<td>6022</td>
<td>282380</td>
</tr>
<tr>
<td>14000</td>
<td>14000</td>
<td>307711</td>
<td>6796</td>
<td>6447</td>
<td>284632</td>
</tr>
<tr>
<td>15000</td>
<td>15000</td>
<td>322203</td>
<td>7278</td>
<td>7062</td>
<td>308658</td>
</tr>
<tr>
<td>16000</td>
<td>16000</td>
<td>338802</td>
<td>7666</td>
<td>7493</td>
<td>311892</td>
</tr>
<tr>
<td>17000</td>
<td>17000</td>
<td>356554</td>
<td>8028</td>
<td>7408</td>
<td>322741</td>
</tr>
<tr>
<td>18000</td>
<td>18000</td>
<td>371415</td>
<td>8389</td>
<td>7804</td>
<td>333261</td>
</tr>
</tbody>
</table>

Demand vs. System Costs

![Graph showing demand vs. system costs for different approaches](image-url)
Outline

1. Background
2. Literature Review
3. Mathematical Model
4. Methodology
5. Experimental Analysis
6. Conclusion
• By performing pickup flow optimization once, the system cost can be reduced by 41 to 46%.

• By iteratively optimizing delivery flow and pickup flow, the system cost can be further decreased by about 20%.

• Experimental analysis on actual data shows the effectiveness of the proposed approach in reducing the system costs compared to other approaches.
Thank you for listening & watching!