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» Background

Increasing Demand in Sea Transportation

* 1In 2021, Ports of Los Angeles and Long Beach handled about 20 million TEUSs.

Annual Container Statistics of POLA/LB
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Figure 1. San Pedro Bay Area Container Statistics
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« Background

Suppose 40% of the containers were carried by rail; there are still about 10
thousand units of containers that needs to be transported daily in San
Pedro Bay area, causing traffic congestion and air pollution.

Therefore, how to manage freight traffic efficiently in urban centers is an
urgent issue.

Figure 2. Traffic Congestions on 1-710 and 1-5
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* Literature Review

This study focuses on the regional container pickup and delivery problem with

predetermined supply and demand on a flow-dependent dynamic transportation
network.

Topics related to freight operation problems:

1. Multi-Commodity Network Flow

Dorneles et al., 2017; Fakhri and Ghatee, 2014; Kuiteing et al., 2018; Letchford and
Salazar-Gonzalez, 2015; Masri et al., 2015; Moradi et al., 2015

2. System Optimal Dynamic Traffic Assignemnt
Peeta and Mahmassani, 1995; Shen et al., 2006 Zhang and Qian, 2020

3. Simulation Models
Mahmassani, 2001; Mahmassani et al., 2007; Zhou et al., 2008

4. Load-Balancing Approachs
Abadi et al., 2016; Zhao et al., 2018; Chen et al., 2021

Research Gap & Contribution

1. Introduce traffic simulator into traditional optimization loop to better
approximate network dynamics caused by traffic flows.
2. Enable truck reuse by extending load-balancing approach with touring
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 Mathematical Model

Model Assumptions
The problem is defined on a transportation network G = (N, 4).

The demand (d; ;) from location i to j is predetermined, which needs to be satisfied by the
end of the day.

All the trucks start from the depot (with the location index 0) and return to the depot by the
end of the day.

The study horizon is discretized into | K| intervals.

Terminologies:

(1) trip is defined as a truck going from one location to another;

(2) truck routing represents the routing decision (which roads to travel on) for a trip;
(3) truck touring represents the sequence of trips for trucks in the study horizon;

(4) delivery flows are the aggregated truck trips carrying containers;

(5) pickup flows are the aggregated truck trips without carrying containers.
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 Mathematical Model

Notation

a  The index of the arcs set, a € A;

k The index of the time interval, k € K;

d; ; The demand from location i to location j in number of containers, i,j € N;
R;; The candidate route set for location i to j with index r;

x[)j'k The delivery flow from location i to location j using route r leaving at time k;
y['j,k The pickup flow from location i to location j using route r leaving at time k;

c; i, The travel cost from location i to j using route r leaving at time k, r € R, j;
A The weighting factor for the travel cost and the truck cost;
pix The delivery flow leaving location i at time k;

qjx The cumulative delivery flow that has arrived at location j by time k;
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Mathematical Model

Pickup and Delivery Problem with Dynamic Transportation Network (PDPDTN)
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Truck employment costs + travel costs

Demand constraint

- Flow conservation
constraints

:I— Domain constraints
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 Mathematical Model

Due to the complexity of the transportation network and the nonlinear

relationship between the traffic flows and the network conditions, it is hard to
explicitly express the binary indicators ¢; jrkand ) }ka. Therefore, instead of
using analytical expressions for these functions, we use simulation models to

approximate transportation network states.

Remark:

oy jrk = lifandonly if the delivery flow from i to j leaving at time 7 with
route r is available for another delivery task at time k.

) }T,imk = 1 if and only if the pickup flow from i to j leaving at time = with
route r is available for another delivery task at time k.
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« Methodology

Problem Decomposition:

PDPDTN
SP1 SP2
finding the least-cost flows finding the minimum cost
for a DTA problem pickup flows for current
delivery flows
We only solve the delivery Based on the delivery flow
flows (x] k) In the solution, we find the best
dynamic transportation pickup flow solution
network. (v{ j ) that can support the
delivery flow solution.
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« Methodology

Solution Framework

SP1

Traffic
Simulation

Load Balancing

Initial Solution
Process

Network Cost

Evaluation

Final Solution
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« Methodology
Load Balancing Process
The intuition for the Load Balancing Process is to distribute demand across the

transportation network over the study horizon, ensuring no single set of paths bears too
much demand.

Single Path Multiple Paths & Time Interval

B

) AFTERNOON
Multiple Paths

) MORNING
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« Methodology

Pickup Flow Optimization

The intuition for the Pickup Flow Optimization is the following:

Phase 1: Load Balancing Process

tripl € X, ! trip 2 € .2

i1,j1k1 i2,J2k2
0 k Q @ = @
ar € leiz,s. t.
1 r <
k1 + 6I1J1ak1 + 5j1'i2'k1+5:11,j1,k1 - kz

Phase 2: Pickup Flow Optimization

---------

trip 3 € j_/f; , 1
j1’12k1+5i1,j1.k1
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» Methodology

Data Flow in the Framework

Pickup flow optimization

Pickup flow solution Delivery flow solution
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* Experimental Analysis

Study Area Parameters

Parameter name

Parameter value

- ® owo | Pometermame

(1) Warchouse 1 Daily horizon 10 hours

©) Vst 15 i

) M o

@ Warehouse 4

® Warehouses’ service time 30 minutes
Warehouse 5

@ Warehouse 6 W9|ght|ng factor A $50/truck

(1) Warehouse 7 Stopping threshold e $100

() Warshouse 9 Maximum running time T¢gq 8 hours

Port of Los Angeles Most of the parameters are learned from Zhao et

(@) PorbofLongBeadh al., (2018) and adjusted based on our dataset from

Giuliano et al., (2021).

Stopping Criteria:
(1) the maximum running time (Tcap) IS reached;
(2) the difference of the system costs between two iterations is smaller than a threshold (¢).
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« Experimental Analysis

Testing Platform

(1) Traffic simulator:
Visum 17

(2) Programming Language
Python 3.6

(3) Solver
Gurobi 9.1.2

(4) Hardware
a virtual machine with 8-core 3.70 GHz CPU and 16 GB of memory

Solution Approaches:

Approach 1: Only use Load Balancing Process to solve the problem;

Approach 2: Optimize Pickup flow once after getting solution from the Load Balancing Process;
Approach 3: Iteratively solve the problem using the framework.
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* Experimental Analysis

Numerical Results

Approach 1 Approach 2 Approach 3
Number Truck Truck Number Truck Truck Number Truck Truck
of Trips Travel Travel of Trips Travel Travel of Trips Travel Travel
Leaving Distance Time Leaving Distance Time Leaving Distance Time
Demand the Depot (mi) (hr) the Depot (mi) (hr) the Depot (mi) (hr)
13000 13000 294739 6464 6022 282380 6664 4022 265217 5853
14000 14000 307711 6796 6447 284632 6914 4446 284037 6671
15000 15000 322203 7278 7062 308658 7576 4324 306701 7307
16000 16000 338802 7666 7493 311892 7815 4572 311125 7516
17000 17000 356554 8028 7408 322741 7966 5308 321333 7645
18000 18000 371415 8389 7804 333261 8553 5858 332797 8121

Demand v.s. System Costs

1.2

@
% 1
g 08

z
o 0.6

g
g 04
g o
02
0

13000 14000 15000 16000 17000 18000 Demand

®Approach 1 ™ Approach2 Approach 3

USCWtefbi Experimental Analysis| 2'1

f Southern

School of Engineering Universit y ol




Outline

1. Background

2. Literature Review

3. Mathematical Model
4. Methodology

5. Experimental Analysis

6. Conclusion

USCWtCI‘bi Outline | 22

School of Engineering University of Southern California




e Conclusion
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By performing pickup flow
optimization once, the system cost
can be reduced by 41 to 46%.

By iteratively optimizing delivery

flow and pickup flow, the system

cost can be further decreased by
about 20%.

Experimental analysis on actual
data shows the effectiveness of the
proposed approach in reducing the
system costs compared to other
approaches.
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