

confident

ingenious

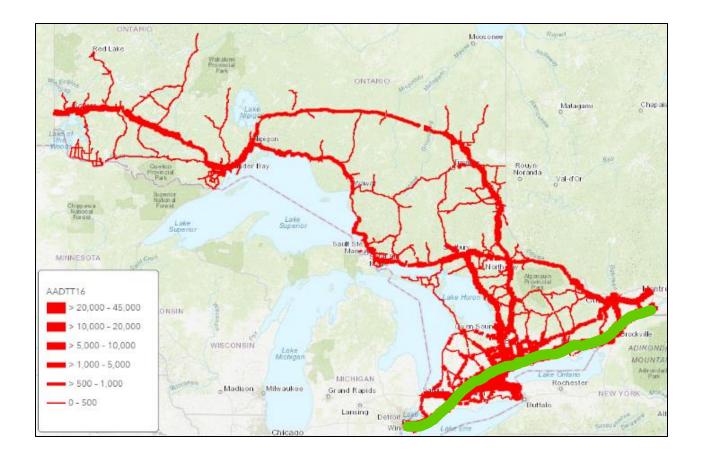
Inter-regional truck route choice modelling with revealed preference and stated preference approaches

Presenter: Kevin Gingerich Co-authors: Ubaid Ali, Yashar Zarrin Zadeh

> 2022 I-NUF Conference May 25, 2022

> > rational

passionate


creative

SP-Setup

2

Motivation

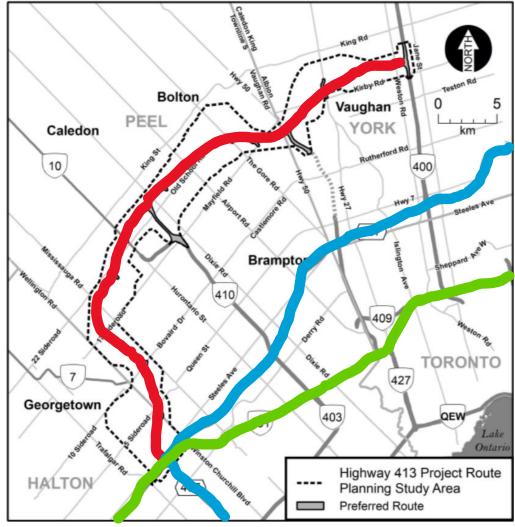
• Highway ON-401 is among the most congested roadways in North America (Business Insider, 2012)

Motivation

Toronto

Rival plans for Highway 413 take centre stage as Ontario election campaign gets underway

29-day campaign period kicks off ahead of June 2 vote

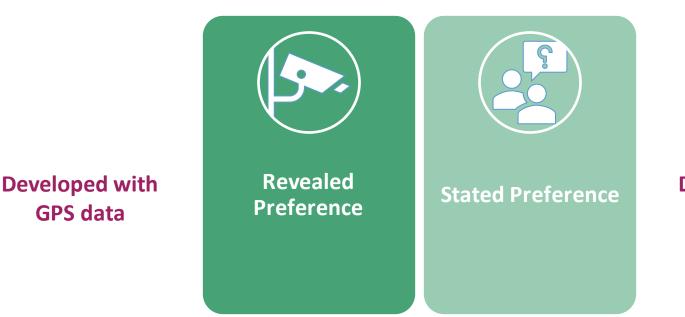

Lucas Powers · CBC News · Posted: May 04, 2022 8:33 AM ET | Last Updated: May 5

Source: https://www.cbc.ca/news/canada/toronto/ontario-election-campaign-day-one-2022-1.6440752

in

Motivation

- Highway 403 (proposedroute)
- Highway 407 (polledryorde)
- Highway 401 (primary route)

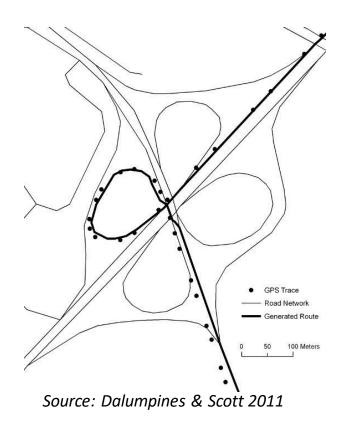

https://www.highway413.ca/

Route Choice Factors

Factors		Attributes	Example References
Time	•	Travel Time Travel Time Variability Delay Congestion	 Hunt and Abraham (2004) Knorring, He and Kornhauser, (2005) Kawamura, (2000) Kong et al., (2018)
Cost	•	Toll Cost Payment method Fuel Consumption Late Delivery Penalty	 Holguín-Veras et al. (2006) Wang and Goodchild, (2014) Zhou et al., (2009) Arentze et al., (2012)
Other	• • •	Vehicle Type Contract Type Road Type Distance Commodity Type	 Rowell, Gagliano and Goodchild, (2014) Ben-Akiva et al., (2016) Sun et al., (2013) Quattrone and Vitetta, (2011)

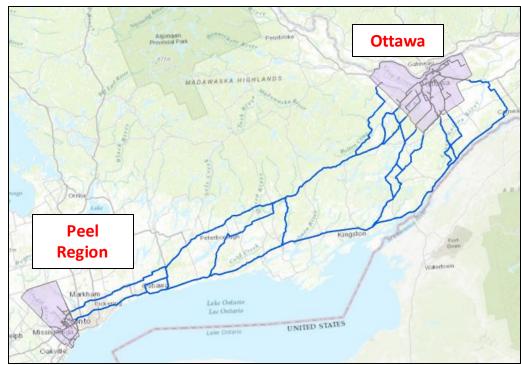
Route Choice Modelling

 Route choice models can predict the redistribution of traffic along alternative corridors


Developed with survey data

SP-Setup

7

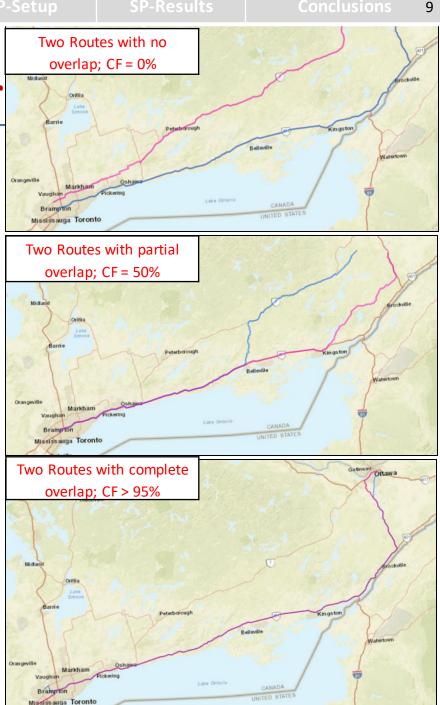

Map Matching

- GPS pings are map-matched:
 ➢using ArcGIS Network Analyst
 - ➤Tool developed by Dalumpines and Scott (2011)
 - Data observed for a 1 week period in March 2016

Routes and Trips

- OD-pairs represent the origin and destination regions for a trip
- Trip paths that have high degrees of overlap are grouped into routes
- Routes represent unique paths between a given OD-Pair

RP-Setup


Commonality Factor

• Unique routes defined using Commonality Factor (CF):

$$CF_{ij} = \sum_{j} \frac{l_{ij}}{\sqrt{L_i L_j}}$$

Where:

- > i and j are observed routes
- L_i and L_j = the lengths of routes i and j, respectively;
- $\succ l_{ij}$ = shared length between route *i* ańd j.
- Initial testing assumed CF <= 85% for unique routes

GPS trips assigned to unique routes

- OD-pairs with only one route are removed from the model
- The number of alternatives (routes) for each OD-pair varied from 2 to 16

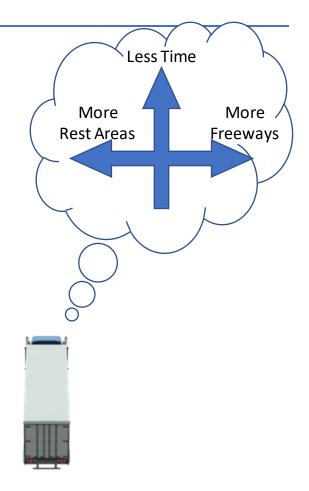
Final Model Data

37,111 trips

577 OD-pairs

2,220 routes

SP-Setup

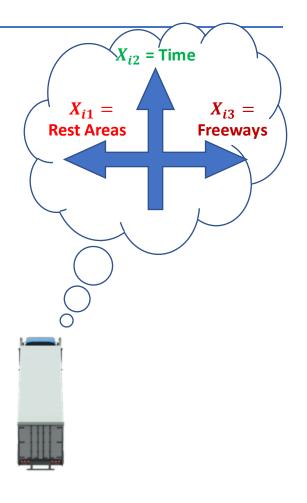

Modelling

• C-Logit discrete choice model

$$P_i = \frac{\exp(\sum_n (\beta_{in} X_{in}) + \beta_{CF} \cdot CF_i)}{\sum_{j \in C} \exp(\sum_n (\beta_{jn} X_{jn}) + \beta_{CF} \cdot CF_j)}$$

Where:

- *P_i* is the probability of a given decision maker selecting alternative i
- β are parameters estimated by the model
- X are input variables
- **CF** are commonality factors


Example Factors

 C-Logit model uses the CF to account for route overlap

 $P_{i} = \frac{\exp(\beta_{i1} X_{i1} + \beta_{i2} X_{i2} + \beta_{i3} X_{i3} + \beta_{CF}.CF_{i})}{\sum_{j \in C} \exp(\beta_{j1} X_{j1} + \beta_{j2} X_{j2} + \beta_{j3} X_{j3} + \beta_{CF}.CF_{j})}$

Where:

- *P_i* is the probability of a given decision maker selecting alternative i
- β are parameters estimated by the model
- X are input variables
- CF are commonality factors

C-Logit Model Results

- A limited number of variables can be included due to correlations
- One example model is given below:

Variable	Coefficient	T-Statistic	Direct Elasticity
Minimum Travel Time	-1.65***	-68.11	-3.306
Freeway Proportion	1.17***	22.53	0.212
Proportion of Hwy401	1.999***	40.21	0.166
Number of Diesel Stations	0.180***	54.74	0.101
Number of Intersections	-0.003***	-9.62	-0.069
CF	0.264***	3.42	n/a
LL(0)	-38523.49		
LL(β)	-17344.63		
Naïve ρ ²	0.550		
Observations	34,625		

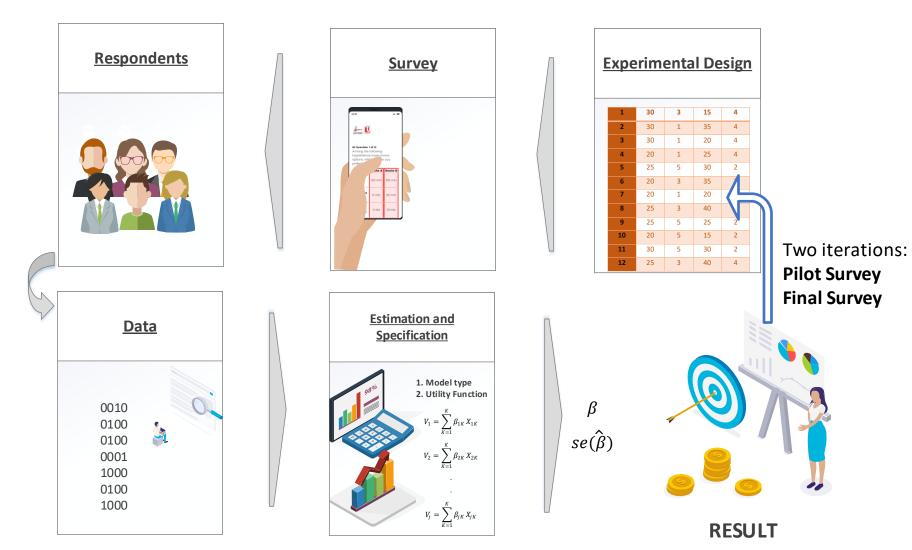
*** indicates the parameter is statistically significant with 99% confidence Note: Model based on CF threshold (for unique routes) set to 65%

Limited Results for Revealed Preference

- The previous model is valuable but....
- Variables such as time and distance are correlated
- Limited sample available for tolls to measure the impact of pricing
- A stated preference approach is discussed in the next section

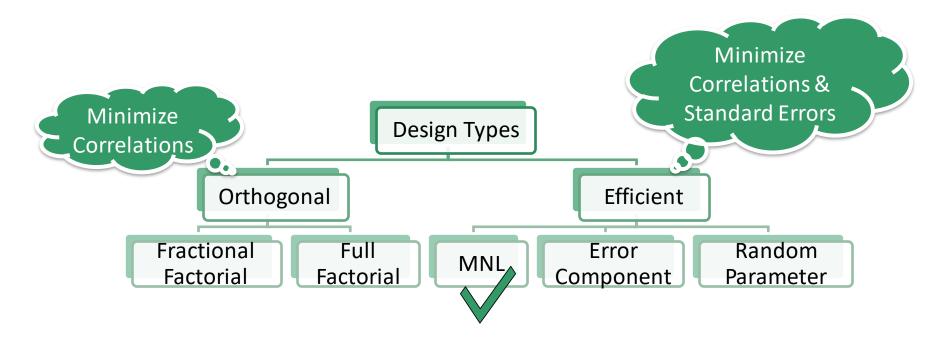
Value of Time for Trucks

• VOT is the amount that a traveler would be willing to pay in order to save time. (Small, 2012)


Reference	VOT (\$CAD/hr)	Study Area			
(Zhou et al., 2009)	\$53.87	Texas			
(Kawamura, 2000)	\$47.15	California			
(Wang and Goodchild, 2014)	\$36.51	Washington			
(Tsirimpa, Polydoropoulou and Tsouros, 2019)	\$79.98	Portugal			
(Toledo et al., 2020)	\$64.64	Texas / Illinois			
		/ Ontario			
(Smalkoski and Levinson, 2005)	\$88.96	Minnesota			
(Ismail, Sayed and Lim, 2009)	\$121.87 British				
		Columbia			
(De Jong et al., 2014)	\$69.76	The			
		Netherlands			
Average VOT = CAD\$74.78/hr					

https://encryptedtbn0.gstatic.com/images?q=tbn%3AANd9GcT71kwRYWheOmHzDcasONPOfS54 xDxwAcHfNQNAy6mab0E_15Rr&usqp=CAU

All values have been converted to Year 2020 and Canadian currency


Methodological Approach

Methodological Approach

SP Design Type

Choice Task

Survey Questions

1. Stated Preference Survey

• Route Choice Hypothetical Scenarios

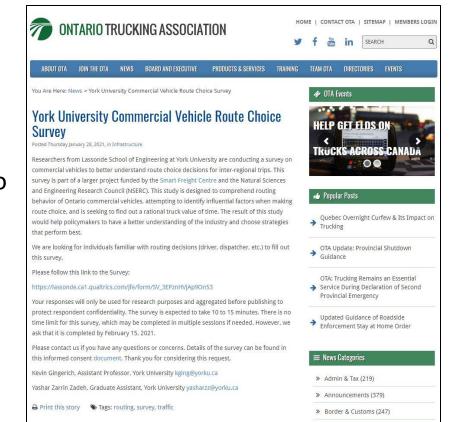
2. Respondent Characteristics

• Age, Experience, Role, Vehicle Size

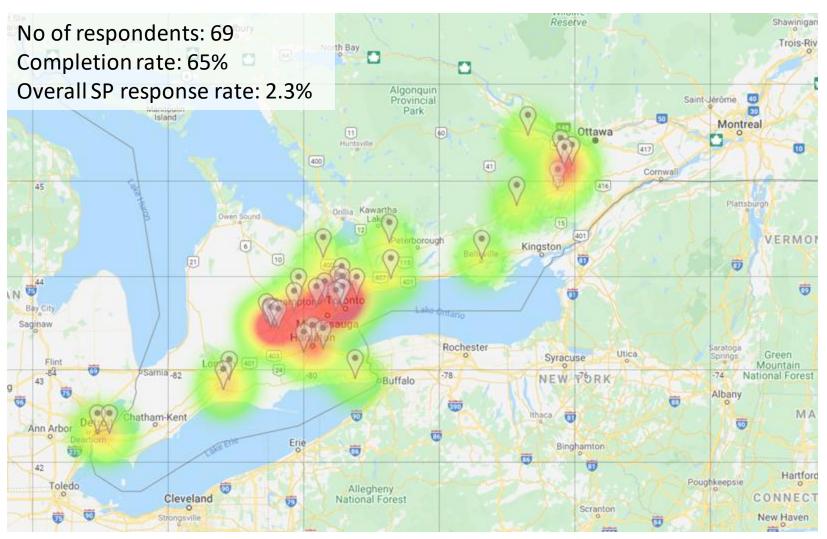
3. Company Characteristics

• Contracts, Role, Commodities, Behavior, Trips, HOS

шшш


4. Descriptive Questions

• Technology, Navigation, e-Commerce, EDI


Block Org Choir	ce situation			route a.dist rou					
1	4	120	0	0	50	100	30	30	0
choice task block	k A1_1 A1_2 3 0								
				Route	А		Rou	te B	
	Trave	el Time		120 m	in	n 100 m		min	
	Poter Dela			0 min			30 min		
	Extra Dista	Extra Distance		0 KM			30 KM		
	Toll (Cost		\$50			\$	0	

Survey Distribution

- Truck carrier contacts retrieved from Yellow Pages
 - Updated using Amazon
 Mechanical Turk
 - 1691 email addresses for Ontario trucking companies
- An advertisement was also posted by the Ontario Trucking Association (OTA)

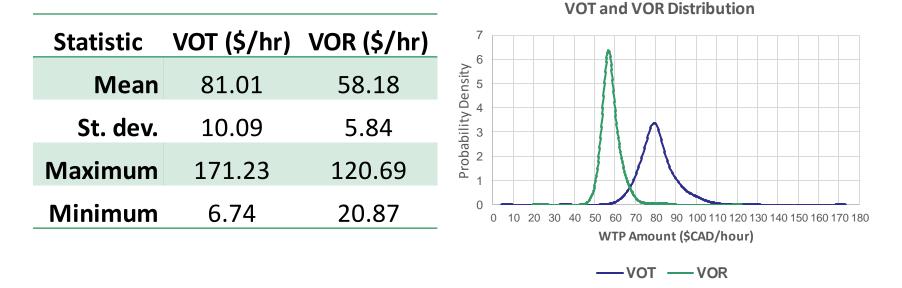
Response Rate

Model Results

• Random parameter logit (mixed) with panels

Variable		Coefficient	T-Statistic	St. Deviation	
Constant (non-toll re	0.281	0.50			
Travel Time (both ro	-0.060***	-6.67	0.025***		
Delay (both route	-0.039***	-4.40			
Toll Cost (toll rout	-0.045***	-4.78	0.022***		
Extra Distance (non-tol	-0.039***	-5.48			
LL[0] = -324.4 N	Jaïve ρ² = 0.412		No. of R	espondents = 39	
LL[C] = -264.3 F	279	No. of C	No. of Observations = 468		
LL[F] = -190.5	.68	Panel G	Panel Groups = 12		

*** indicates the parameter is statistically significant with 99% confidence


External Dummy Variables

• Additional variables added (one at a time) to the previous model (toll alternative)

	Mixed Logit with Panels						
Variable Category	Variable	Coefficient	T-Statistic				
Compensation	Actual Distance	-1.147*	-1.90				
Method	Ti Micro/Small Enterprises are less likely to use the toll Fix route.						
	20 years r	-1.250**	-2.10				
Establishment	More the sears old	0.954*	1.95				
Characteristics	Micro/Small Enterprise	-1.038**	-2.11				
	Medium/Large Enterprise	1.171**	2.19				
Shipment	Truckload	-0.843	-1.58				
Characteristics	Less-Than-Truckload	0.192	0.38				
Vehicle	Single Unit	1.197**	2.23				
	Single Trailer	-0.769	-1.37				
Characteristics	Multi Trailer	2.649**	2.36				

Notes: ***, **, *, represent 99%, 95%, and 90% statistical significance respectively.

Measured Value of Time (VOT)

- A normal distribution is assumed for the above results
- The measured value of time (VOT) = \$81.01 CAD is similar to the average value found in literature

Conclusions

- The revealed preference models confirm travel time as a primary factor
- The stated preference model generates results for toll-specific scenarios
- Results from these models can be used to assign probabilities for truck routes or convert costs using VOT

Recall: Motivation

Rival plans for Highway 413 take centre stage as Ontario election campaign gets underway

29-day campaign period kicks off ahead of June 2 vote

Lucas Powers · CBC News · Posted: May 04, 2022 8:33 AM ET | Last Updated: May 5

Thanks for watching!

- Funding sources: NSERC, York University
- Questions?