

Mobility interventions to protect supply chain workers during pandemics

Presenter: Kevin Gingerich

Co-authors: Elanakayon Annalingam, Erik Nevland, Peter Park

2022 I-NUF Conference May 26, 2022

creative passionate rational confident ingenious

Objectives

Truck Parking (rest stop) supply

- > identify long-haul HCV rest stop parking locations
- Classify HCV parking locations
- Estimate total (legal) parking supply

Connect rest stops with distribution centers

- Identify major distribution centers (DCs)
- Link observed trips between rest stops and DCs
- Prioritize rest stops for resources during a pandemic

Background

TRANSPORTATION

From closed rest areas to drive-thru testing limitations, truck drivers face rough road during coronavirus pandemic

By Mary Wisniewski Chicago Tribune • Jun 24, 2020 at 2:10 pm

Truck driver Brenda Echols of JKC Trucking Inc. at Summit Cold Storage in Summit, May 15, 2020. Echols drives between Illinois and Texas. (Antonio Perez / Chicago Tribune)

Background

- **Fatigue** is cited as a contributing factor to freight collisions.
- Hours of Service (HOS) Laws have been enacted with the intent of reducing driver fatigue.

- Electronic Logging Device mandates:
 - The United States began mandating ELDs in 2017
 - Canada implemented a similar ELD mandate in 2021; enforcement expected in June 2022

Background

Caledon illegal trucking operator hit with \$1M fine

Identify Parking Locations

- Truck GPS data for 2014 was used to identify long-haul HCV stop locations:
 - ~27 million stop events
 - ~3.3 million trips in North America
- Rest stops are identified when a vehicle is stopped for 2 hours or longer in the middle of a trip

Parking Activities: Region of Peel

Classification Scheme

Notable Truck Parking Characteristics:

- 1. **Legality** is a parking space legal or unauthorized?
- 2. Accessibility is a parking space open or limited access?
- 3. Ownership is a parking space publicly or privately owned?
- 4. **Dedication** is parking the dedicated function of the location?
- 5. Roadside is the parking space a roadside?

Classification Scheme

<u>Authorized Parking Locations</u>

1 Public Rest Areas and Gas **Stations**

(2) Weigh Stations

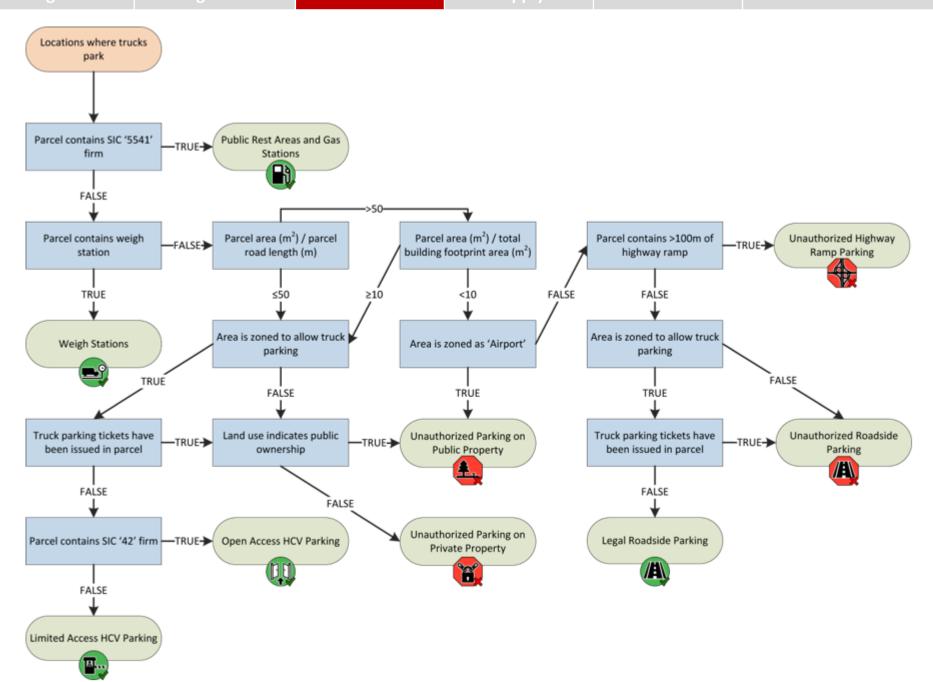
(3) Open Access HCV Parking

(4) Limited Access HCV Parking

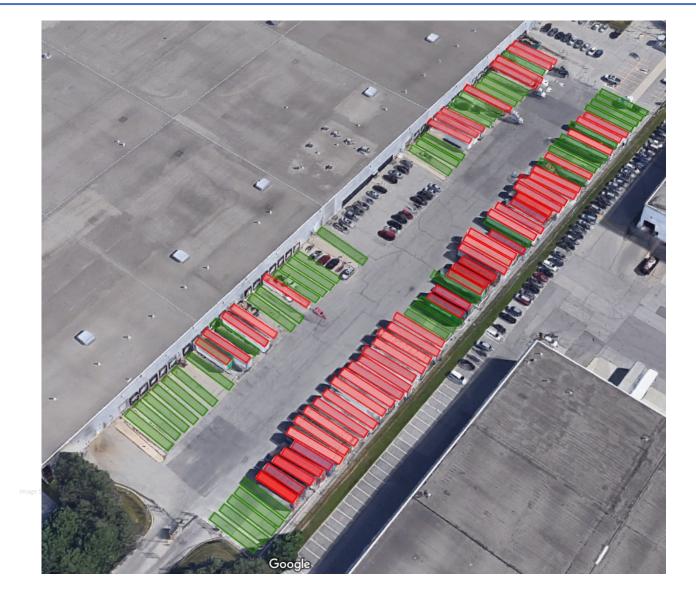
(5) Authorized Roadside Parking

<u>Unauthorized Parking Locations</u>

6 Unauthorized Roadside Parking

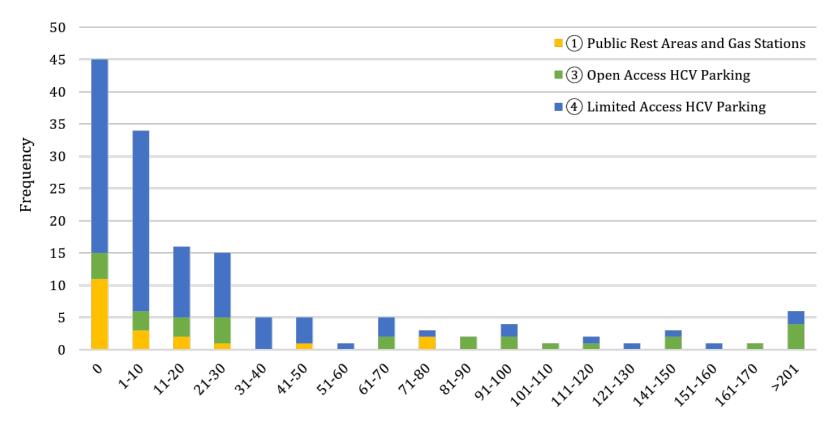

7 Unauthorized Highway Ramp Parking

(8) Unauthorized Parking on Public **Property**



(9) Unauthorized Parking on Private **Property**

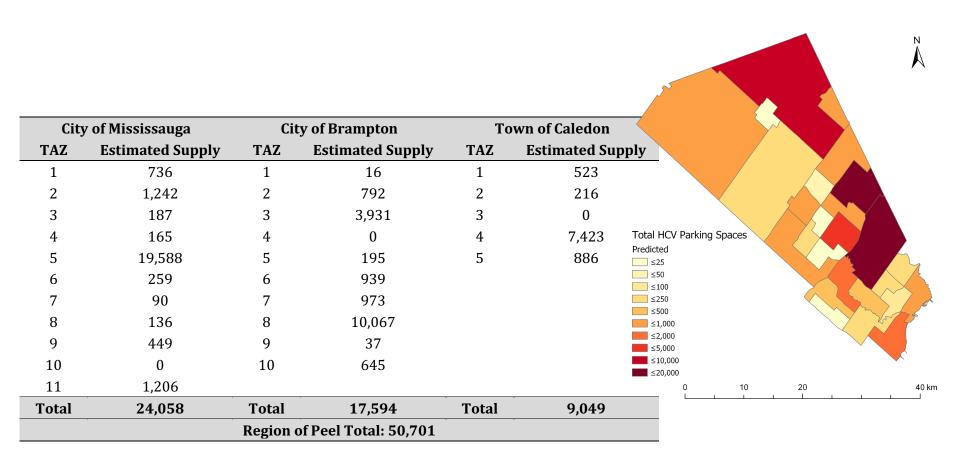
11


HCV Parking Supply

ackground Parking Locations Classification Supply Prioritization Conclusions

13

Parking Supply – Manual Counting


Number of HCV Parking Spaces Counted

Parking Supply – Model Results

	Negative Binomial						Zero-Inflated Negative Binomial					
Variable	Model 1		Model 2		Model 3		Model 4		Model 5		Model 6	
	β	р	β	р	β	p	β	р	β	p	β	р
Intercept	1.49	<0.001***	2.27	<0.001***	0.89	0.014**	2.07	<0.001***	2.76	<0.001***	1.77	<0.001***
$Perimeter_i$	1.96	<0.001***			2.19	<0.001***	1.56	<0.001***			1.62	<0.001***
$Rural_i$			1.48	0.051**	-0.35	0.659			2.25	<0.001***	0.87	<0.001***
Perimeter _i × Rural _i	-2.63	0.001***					-1.91	<0.001***				
$Area_{paved,i}$			53.04	<0.001***	82.90	0.005***			38.25	<0.001***	40.32	<0.001***
$Perimeter_i$ × $Area_{paved,i}$					-49.46	0.025**					-20.67	<0.001***
$Class_{\mathtt{open},i}$	1.02	0.006***	0.57	0.139	0.60	0.111	0.97	<0.001***	0.54	<0.001***	0.67	<0.001***
$Class_{\mathtt{rest}.i}$	-0.12	0.781	-0.44	0.322			0.50	<0.001***	0.10	0.184		
$IND_{59,i}$	-2.13	0.007***	-2.17	0.006**	-2.04	0.009***	-1.80	<0.001***	-2.17	<0.001***	-1.98	<0.001***
Zero-Inflated Variables												
Intercept							0.14	0.664	0.32	0.923	0.11	0.744
Area _{paved,i}							-163.07	0.003***	-124.72	0.005***	-156.99	0.004***
$Perimeter_i \times Are$	ea _{paved,i}						68.40	0.051*	69.31	0.024*	37.76	0.055*
Data												
Removed Outliers	3		1		2		3		1		2	
n	127		129		128		127		129		128	
k		5		5	6		5 + 2		5 + 2		6 + 2	
df	1	121	-	123	121		118		120		118	

(***), (**), (*) represent statistical significance to 99%, 95%, or 90% respectively

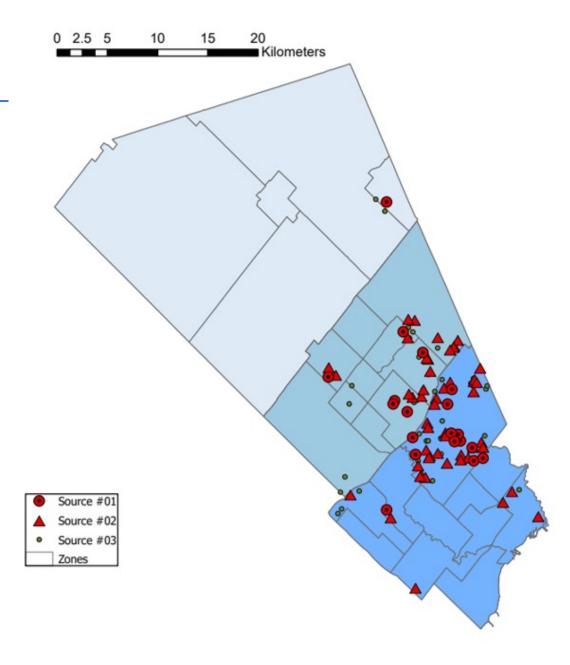
Parking Supply – Model Estimates

16

Prioritization of Rest Stops

 GPS data is used next to identify trips between overnight rest stops and distribution centers (DCs)

- GPS Data in the Region of Peel
 - obtained from Transport Canada and the Smart Freight Centre


Description	1st dataset received	2 nd dataset received		
Time Frame	February 1, 2020 to July 31,	January 1, 2019 to Dec		
	2020	31, 2019		
Raw data file size	109,372,246 data records	50,415,327		
Data fields	Truck ID, date/time, latitude,	Truck ID, date/time,		
	longitude	latitude, longitude		
Study Area	Region of Peel	Region of Peel		
Number of unique trucks	117,537	43,736		
(based on power ID)				

- Trips identified for trucks:
 - resting overnight for at least 2 hours: 9 pm to 6 am period
 - Traveling to a distribution center (DC) in the morning

Identifying Distribution Centres (DCs)

Source	Name	Description
1	McMaster Institute of Transportation & Logistics report (MITL, 2014)	A list of firms that attract or generated significant freight activity in the Greater Toronto-Hamilton Area.
2	DMTI Enhanced Points of Interest	Businesses filtered by Standard Industrial Classification (SIC) codes using SIC4225 (i.e., warehouses).
3	ATRI GPS data	Locations with a high concentration of parking were individually verified.

DC Locations

Optimization

- P-Median used to determine impact of available open/closed rest stops
- Assign closest open rest stop to the DC for each trip
- Travel cost based on AM morning travel times
- Demand based on observed trips to DCs

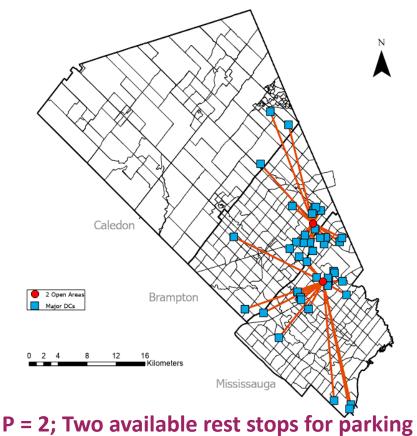
Minimize $\sum_{i} \sum_{j} D_{j} c_{ij} x_{ij}$

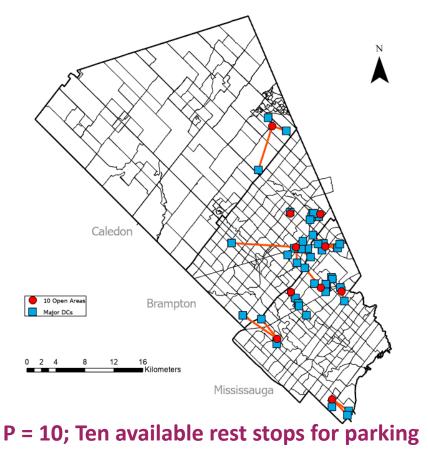
Subject to:

•
$$\sum_{i} x_{ij} = 1 \quad \forall j$$

$$\sum_{i} Y_i = p$$

•
$$x_{ij} \leq Y_i \quad \forall i, j$$

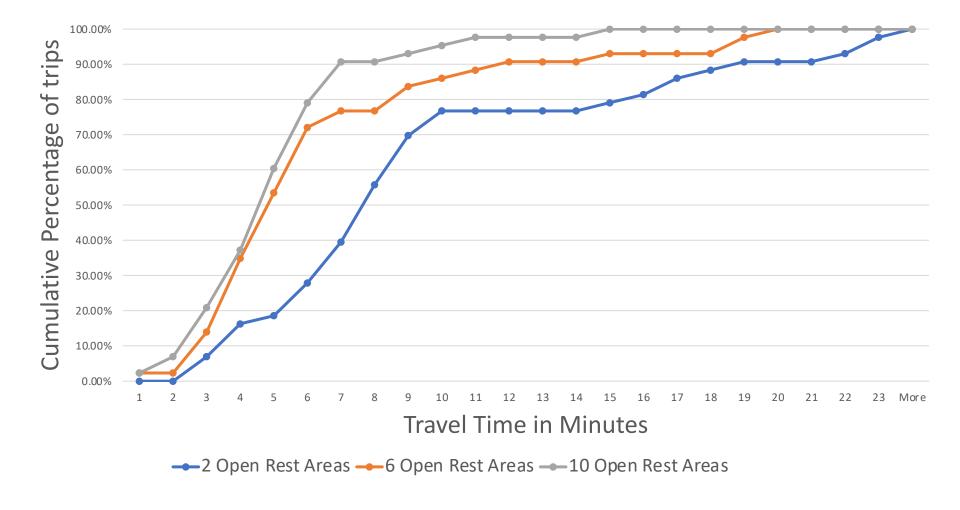

■
$$x_{ij} \in \{0,1\} \quad \forall i,j$$


$$\bullet \quad Y_i \in \{0,1\} \qquad \forall \ i,j$$

ckground Parking Locations Classification Supply Prioritization Conclusions

Trip Rest Stops to DCs

 How does opening more rest areas help change travel time between major freight facilities?



g

22

Travel Time Results

Conclusions

Optimization testing is still in progress

- Optimization can benefit from:
 - > Expanded data beyond sample values
 - > Capacity constraints based on parking supply
 - Substitution patterns with other potential parking locations

Further research expected on illegal truck parking

Acknowledgements

- NSERC
- Region of Peel
- Transport Canada
- Additional data providers