

Warehouse Location Choice

A Case Study in Los Angeles, CA

Sanggyun Kang

Ph.D. Candidate in Urban Planning and Development
METRANS Transportation Center
Sol Price School of Public Policy
University of Southern California
Doctoral Student Transportation Research 4/12/17

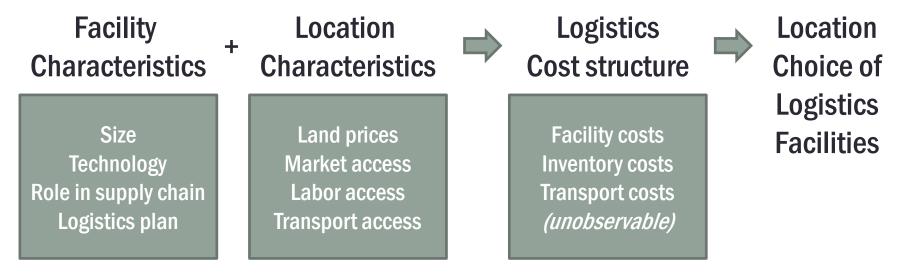
USC CSULB

Sol Price School of Public Policy

Research Objectives

- Understand how and why warehouses have decentralized from central urban areas to the periphery
- 1. Look at warehousing location choice factors
- 2. Evaluate changes in location & changes location choice factors
 - Focus on large warehouses' location change/choice

1. Warehousing Location Choice

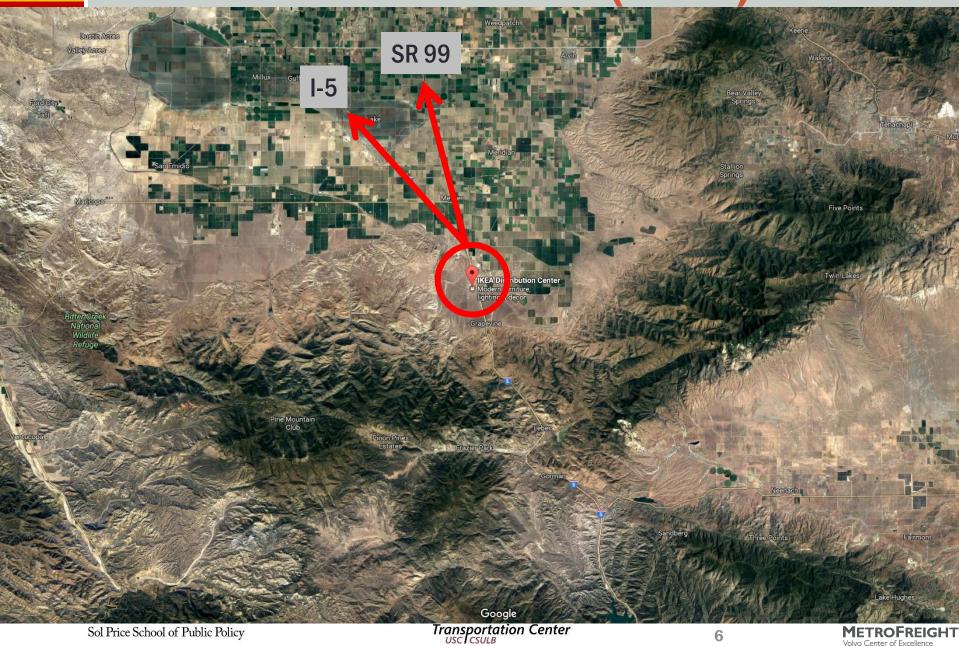


Warehousing Location Choice

Warehouse?

- An intermediary that connects supply chain
- Part of the logistics industry
- Warehouse Location Choice

Ikea Distribution Center (2001)



Sol Price School of Public Policy

Transportation Center

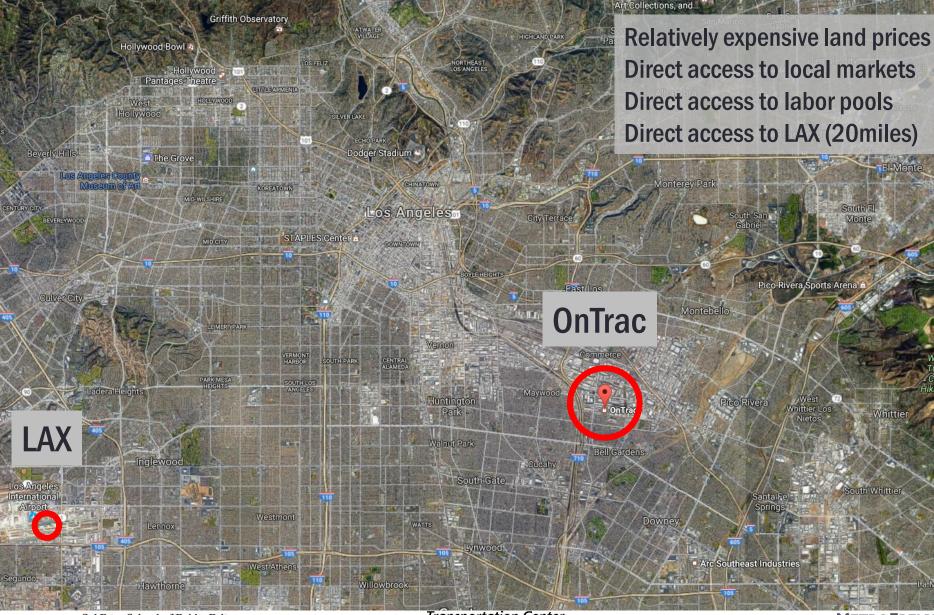
METROFREIGHT Volvo Center of Excellence

Ikea Distribution Center (2001)

Ikea Distribution Center (2001)

METROFREIGHT Volvo Center of Excel

OnTrac Package Delivery (2009)


Sol Price School of Public Policy

Transportation Center

8

METROFREIGHT Volvo Center of Excellence

OnTrac Package Delivery (2009)

Sol Price School of Public Policy

Transportation Center

9

METROFREIGHT

2-1. Changes in Location

"...relocation and concentration of <u>logistics facilities</u>

toward suburban areas outside city centre boundaries"

Dablanc and Rakotonarivo (2010)

Sol Price School of Public Policy

Why do they decentralize?

- Economic restructuring
 - Globalized, geographically dispersed supply chains
 - Adv. in info/transport tech. reduced transport costs
 - Adv. in logistics tech. instant response / short dwell time
 - Access to national and global markets
 - Proximity to highways, rail and intermodal facilities
- More modernized and larger warehouses
 - To transport larger volumes of goods more frequently and reliably
 - Mega distribution center and automation
- Land price and availability
 - Low rent, large parcels, and favorable zoning

Sol Price School of Public Policy

Why should we care?

- Warehousing decentralization and clustering
 - Location shifts from central areas to suburban/exurban areas
 - Concentration: counties with rich transport infrastructure
- Warehouse as a truck trip generator
 - If farther from markets, more travel miles, greater impact
 - Congestion, increased fuel consumption, air pollution, noise, vibration, infrastructure damage, environmental justice
- Warehouse as mobile sources
 - Diesel particulate matter from trucks at warehouses/DCs

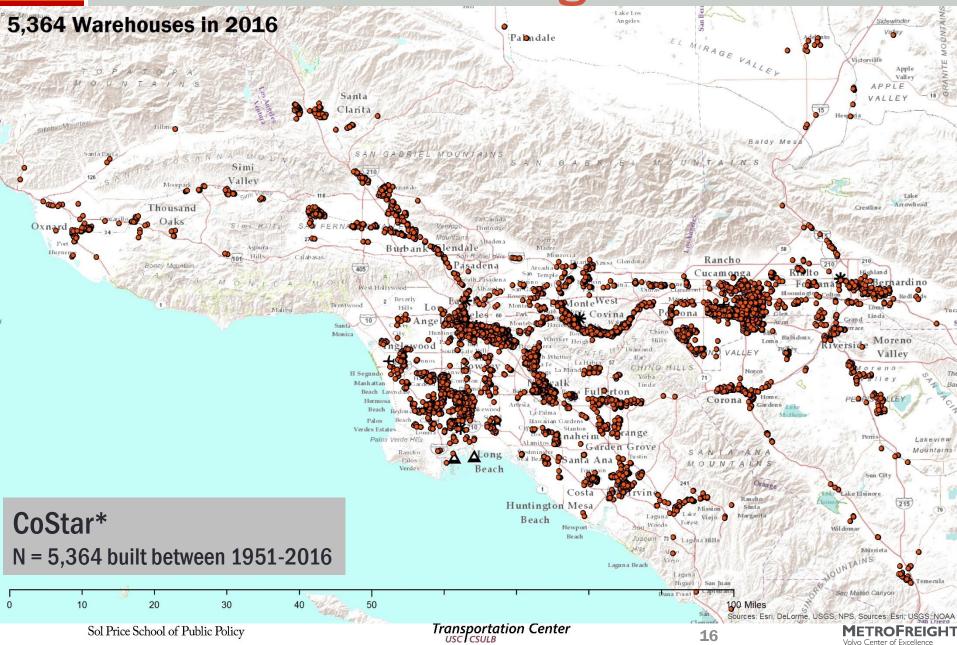
Research Gap

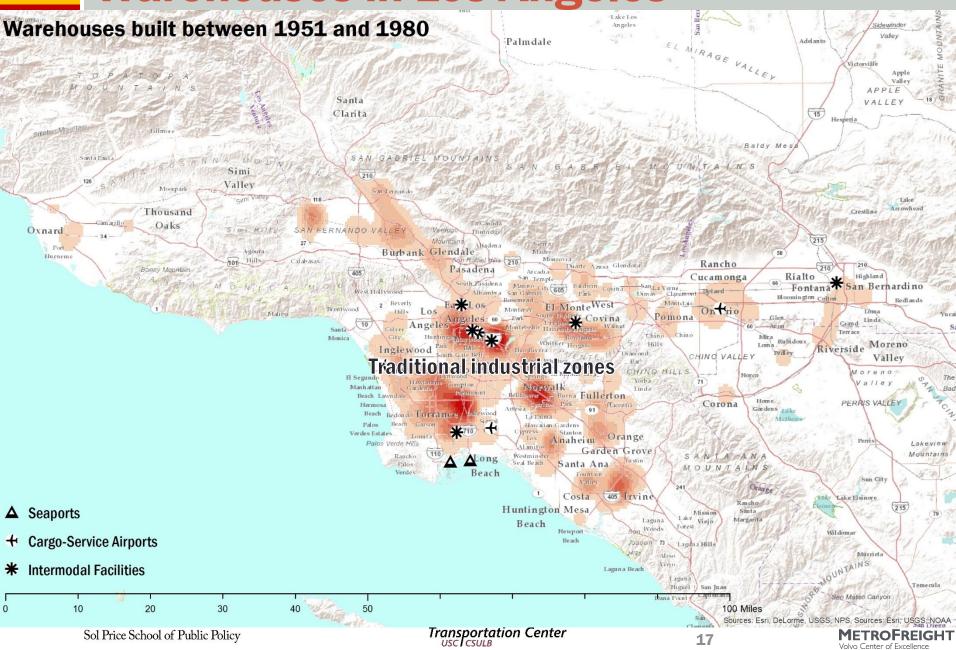
Evaluation of	Comparison	Hypothesis Test	Literature?	
Distribution changes	From t-1 to t	H0: $D_t - D_{t-1} = 0$	Multiple locations: Several Multidimensional aspect: No Statistical testing: Just a few	
Location choice factors	Cross-section	H0: β of factor _i = 0	Multiple locations: Just a few Facility characters: Limited Location character: Several	
Changes in location choice factors	From t-1 to t	None		

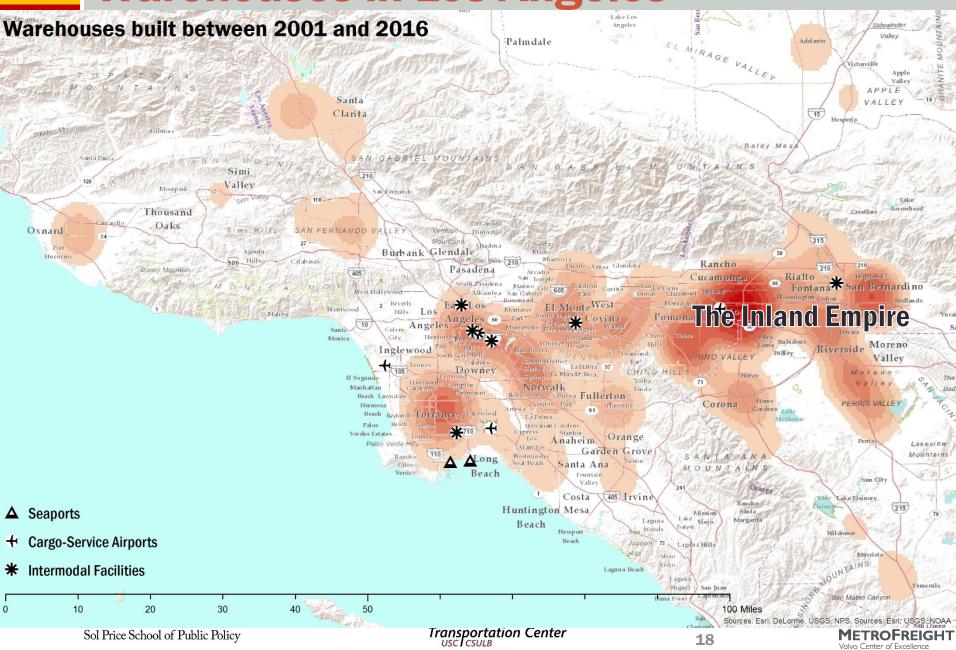
Warehousing Location and Character.

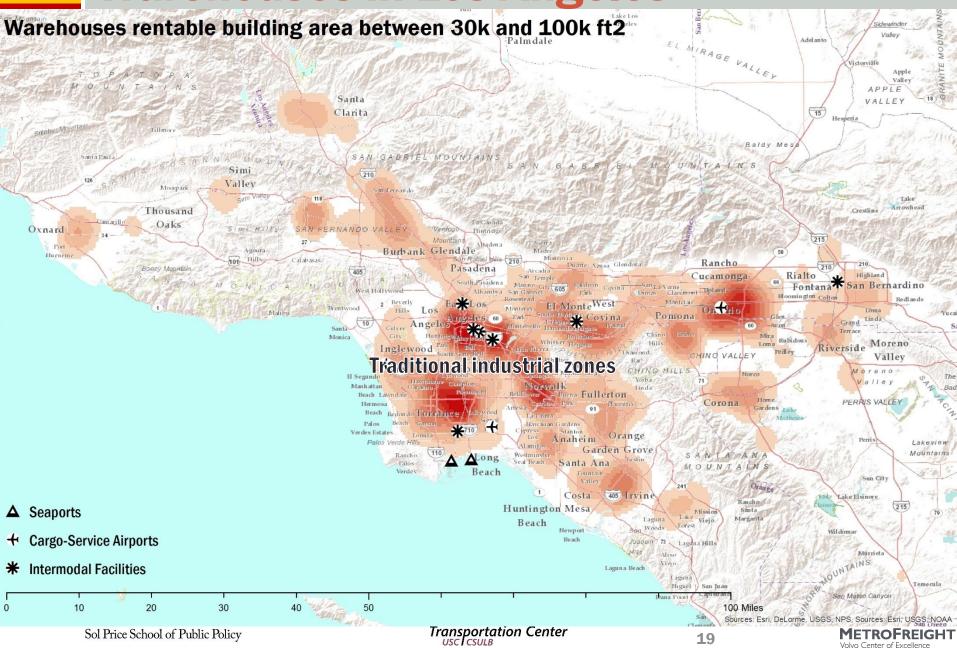
CoStar

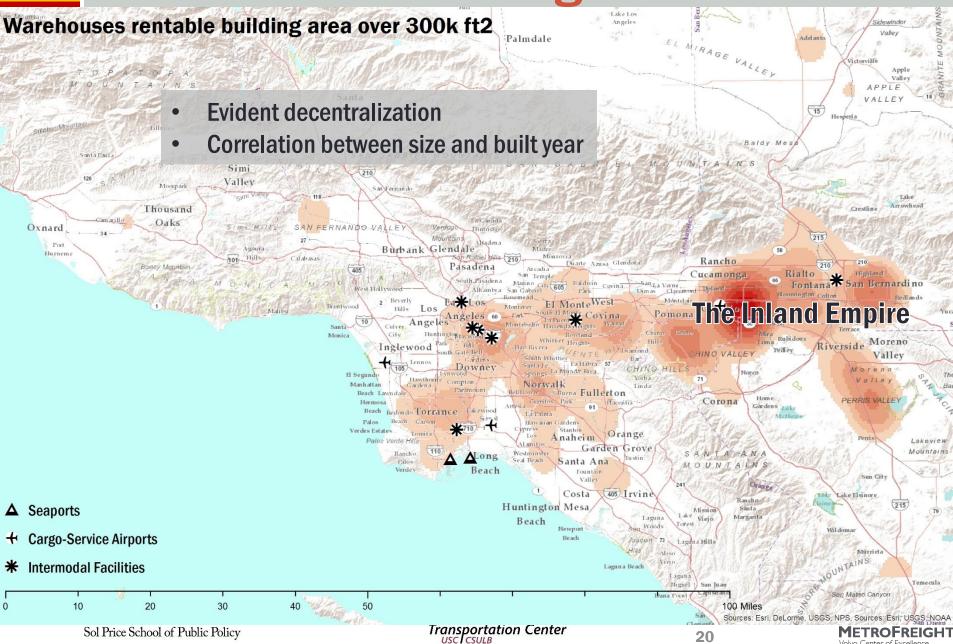
- Industrial real estate listings
- Warehouses, truck terminals, distribution centers, or cold storages
- Address, rentable building area (RBA), year of construction, N of loading docks, N of floors
- No retrospective analysis; if demolished, left market: not available


What we have:


- 5,364 facilities (existed in 2016)
- RBA > 30,000 ft²
- Year of construction between 1951 and 2016







2-2. Changes in Location Factors

Sol Price School of Public Policy

Research Approach – Discrete Choice

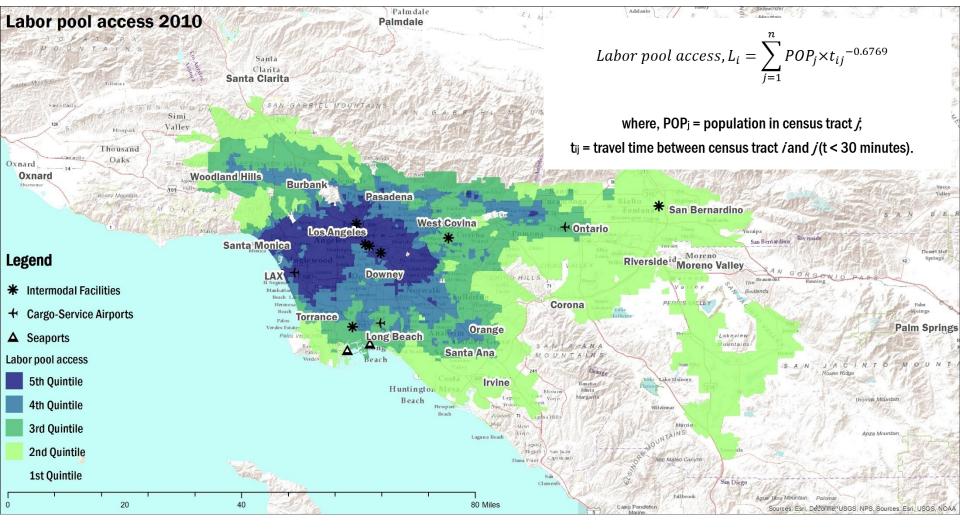
Structure – Firm location choice

- The choice of a location entails an unobservable profit X
- Facility and Location characteristics jointly influence the profit
- Choice of A over B is made if/only if
 Profit A > Profit B
- Multinomial models
- Design of choice sets
 - Cannot evaluate every single choice
 - Independence of irrelevant alternatives (heterogeneity between choices)
 - Cluster analysis using location characteristics (Ward's linkage)
 - Location characteristics to describe each location choice
 - From 660 census tracts (minimum 1 facility) to seven choice sets

Design of Location Choice Sets

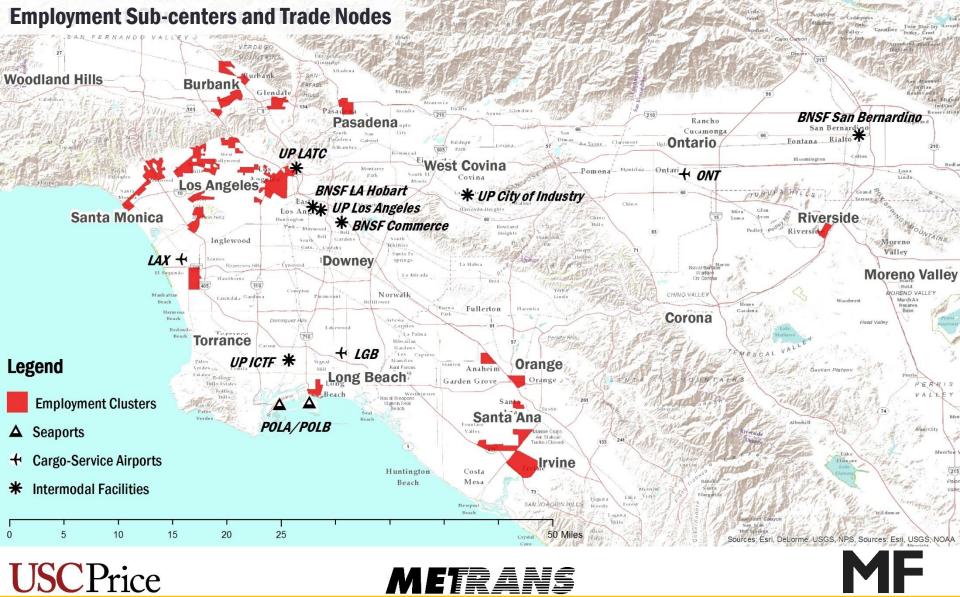
Location factors	Definition
Land price	Population and employment densities in 2010, as proxies (Clark, 1951; McDonald, 1989)
Labor pool access	Sum of population (2010) with an inverse travel-time weight within 30 min driving distance
Proximity to local markets	Driving time to the <u>nearest</u> employment sub-centers (Giuliano and Small, 1991)
Proximity to Transport nodes	Driving time to the <u>nearest</u> airport, seaport, intermodal terminals Distance to the nearest highway ramps

*Travel time is calculated based on the SCAG Regional Transportation Plan 2012 database Using ArcGIS Network Analysts



Sol Price School of Public Policy

Location Characteristics



24

Location Characteristics

Sol Price School of Public Policy

Transportation Center

METROFREIGHT Volvo Center of Excellence

Location Choice Sets Santa Clarita Vallet Hesperia Tia ore anta **t**(La Valley Moorpar Arrowhead a Canada Car willo Oal lintridge Oxnard Woodlan Burbank Kanche asadena Hueneme ANTA MONICA ario West Covina San'Bernardino Los Los Ange Yucaipa Santa Monica Riverside Monica Legend Moren Beaumont La Habrachino Downey El Segundo Moreno Vallev Corona **Location choice sets** dens Torrance Jacinto Orange 1 Downtown LA, Inglewood, LAX Palos Verdes Garden imet Santa Ana Beach Costa 2 Commerce, Norwalk, Torrance, Ports inore Irvine Huntington Mesa Beach laoma 3 Orange, Anaheim, Santa Ana, Irvine Laguna Hill: Vicio Murri 4 City of Industry, Azusa, Burbank, Chatsworth Laguna Niguel Temecula Dana Island n Clemente 5 Ontario, Chino, Corona, Beaumont Δ Seaports Point Fallbrook Camp Pendleton 6 San Bernardino, Riverside + Cargo-Service Airports Marine Corps Basi 7 The Outskirts Intermodal Facilities Vista Oceanside 0 20 30 40 50 100 Miles 10 Transportation Center USC I CSULB Sol Price School of Public Policy METROFREIGHT 26

Characteristics of Location Choice Sets

Loc. Sets	Location (N)	Land price	Labor pool access	Proximity to local market	Proximity to trade node
1	Downtown LA, East LA, Culver City, Inglewood, LAX (99)	High	High	Very close	Very close
2	Commerce, Vernon, Norwalk, Carson, Torrance, Ports (147)	Average	High	Far	Very close
3	Orange, Anaheim, Santa Ana, Irvine (50)	Average	Low	Average	Far but to seaports
4	[BASE] City of Industry, Azusa, Burbank, Chatsworth (132)	Average	Average	Average	Average
5	Ontario, Chico, Corona, Beaumont (114)	Low	Low	Far	Far
6	San Bernardino, Riverside (62)	Low	Low	Far but Riverside	Far but to inter-modal
7	The outskirts (56)	Very low	Very low	Very far	Far

27

Sol Price School of Public Policy

rice

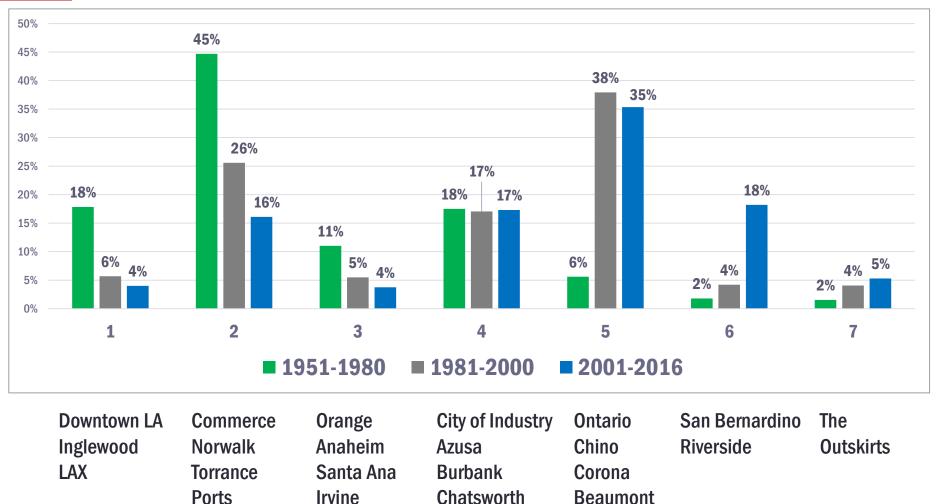
Research Approach – Discrete Choice

General model

- Probability of a facility (i) to be located in 1 of 6 choice sets (j) over the base outcome (#4) is a function of facility characteristics (X)
- Multinomial logit

$$p_{ij} = Pr(y_i = j) = F_j(X_i, \theta)$$

- Var1: Rentable building area as a continuous variable
 - As a proxy for economies of scale
- Var2: Built year as a categorical variable: 3 periods
 - 1) 1951-1980; 2) 1981-2000 (base); 3) 2001-2016
- Stepwise models
 - Var1
 - Var1 + Var2


Results

Share of Warehouses by Built Year

USC CSULB

30

Share of Warehouses by Size

Multinomial			Model 1 β	Model 2 β
	SIZE	Log(RBA)	-0.304 **	-0.213 **
	YEAR	1951-1980		1.098 **
1 Downtown LA-LAX		1981-2000	(base period)	
		2001-2016		-0.326
		Constant	2.872 **	1.282
	SIZE	Log(RBA)	0.008	0.087
2 South LA-Port	YEAR	1951-1980		0.541 **
Z SUUII LA-FUIT		2001-2016		-0.497 **
		Constant	0.505	-0.571
	SIZE	Log(RBA)	-0.186 *	-0.115
2 Orango Anahaim	YEAR	1951-1980		0.662 **
3 Orange-Anaheim		2001-2016		-0.375
		Constant	1.226	0.150
4 City of Industry	(base outcome)			
(** if P <0.01; * if P <0.05) Price	ME1	RANS		MF

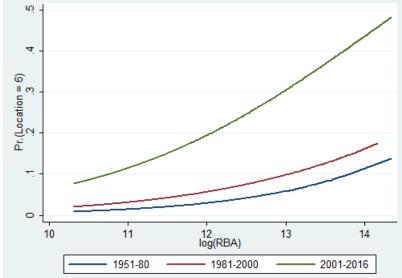
Transportation Center

Sol Price School of Public Policy

METROFREIGHT Volvo Center of Excellence

Multinomial			Model 1 ß	Model 2 ß
	SIZE	Log(RBA)	0.414 **	0.318 **
	YEAR	1951-1980		-1.900 * *
5 Ontario-Corona		2001-2016		-0.172
		Constant	-4.369 **	-2.796 **
	SIZE	Log(RBA)	1.005 **	0.757 **
C CD Diverside	YEAR	1951-1980		-0.773 **
6 SB-Riverside		2001-2016		1.184 **
		Constant	-12.669 **	-10.073 **
	SIZE	Log(RBA)	0.046	-0.040
7 The eutoliste	YEAR	1951-1980		-0.991 **
7 The outskirts		2001-2016		0.263
		Constant	-2.175	-0.987
Pseudo R2			0.020	0.089
Log likelihood			-9,050.6	-8,410.28
N			5,364	5,364
(** if P <0.01; * if P <0.05)				ME
CPrice		<u>RANS</u>		
Sol Price School of Public Policy	Transportation Center USC I CSULB		33	METROFREIGHT Volvo Center of Excellence

Multinomial			β	Sig.
5 Ontario-Corona	SIZE	Log(RBA)	0.318	* *
	YEAR	1951-1980	-1.900	* *
		2001-2016	-0.172	
		Constant	-2.796	* *


					Interest		L
Ontario, Chico, Corona, Beau	mont	4: - rú -					
Land Price	Low	ation = 5) .3					
Labor pool access	Low	Pr.(Location = (
Proximity to local markets	Far	~ - -					
Proximity to trade nodes	Far	10	11 1951-80 -	12 log(RBA) —— 1981-200	13 0	14 2001-2016	
SCPrice M		RANS	Exp(1	.2.6) = 30	0k ft2	MF	
Sol Price School of Public Policy	Tran USC	nsportation Center		34		METROFF Volvo Center of Exc	

Marginal effect

Multinomial			β	Sig.
	SIZE	Log(RBA)	0.757	* *
	YEAR	1951-1980	-0.773	* *
6 SB-Riverside		2001-2016	1.184	* *
		Constant	-10.073	* *

San Bernardino, Riverside	
Land Price	Low* Lower than #5
Labor pool access	Low* Higher than #5
Proximity to local markets	Far but Riverside
Proximity to trade nodes	Far but to intermodal

4. -A. -N. -

Marginal effect

Sol Price School of Public Policy

Price

Transportation Center

METRANS

Summary of Results

- Discrete choice model: compared to be locating in #4:
 - Different location choice by size and built year
 - Larger warehouses are more likely to be in #5 and #6.
 - Newer warehouses are more likely to be in #5 and #6.
 - #5, popular since 1981-2000; whereas #6, popular since 2001
- Changes in factors? (relative to #4)
 - Land prices (-)
 - Labor pool access (-); Local market access (-); Transport access: (-)
- Cost rebalances?
 - Facility & inventory costs: (-) (land prices, scale economies)
 - Transport costs: (+)

Discussion

Transportation costs

- Many operational aspects to consider at the facility level (Vehicle types, shipment origin/destination, routing, time of operation)
- Shipment consolidation through centralized facilities
- Gains from operational efficiency might offset negative impacts (Kohn and Brodin, 2008; Dhooma and Baker, 2012)

Expansion and concentration of large-scale warehouses

- Major truck travel generator
- Concentration of negative impacts
- Environmental justice

37

Conclusion and Future Research

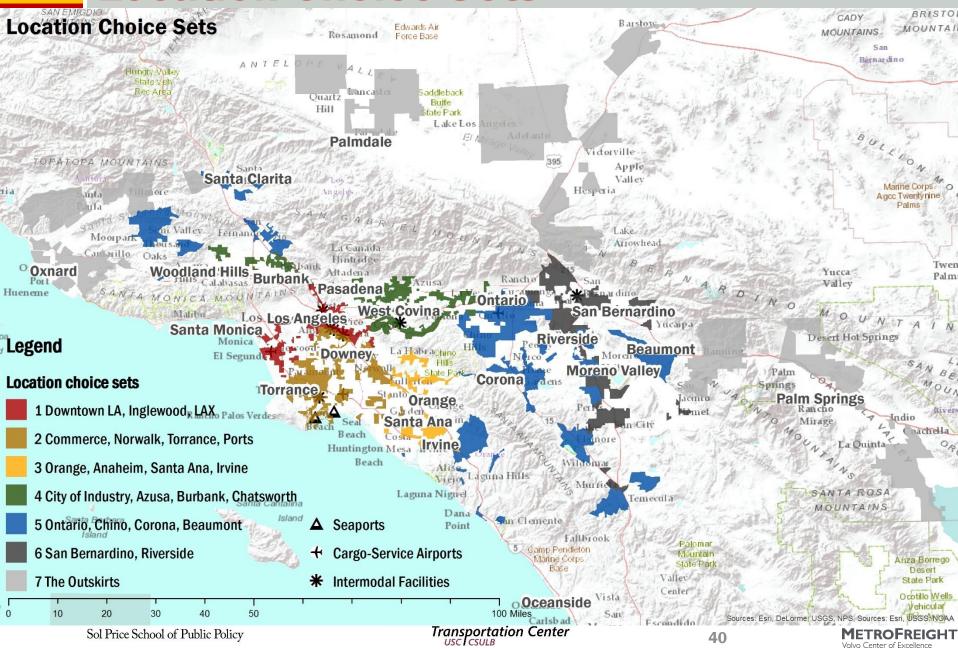
Conclusion

- Recent warehouses have prioritized lower land prices and economies of scale over labor pool, local market, and transport access
- Cost tradeoffs between land prices and transport costs
- **Future Research**
 - Truck VMT?
 - The rise in e-commerce, instant delivery and warehouse location

Thank you!

Sanggyun Kang

Ph.D. Candidate in Urban Planning and Development METROFREIGHT Volvo Center of Excellence METRANS Transportation Center Sol Price School of Public Policy University of Southern California


sanggyuk@usc.edu

Location Choice Sets

