October, 17, 2016

Why do warehouses decentralize more in certain metropolitan areas?

Sanggyun Kang

Ph.D. Candidate in Urban Planning and Development METROFREIGHT Volvo Center of Excellence METRANS Transportation Center Sol Price School of Public Policy University of Southern California

Overview

- Warehousing Decentralization
 - Why should we care?
 - Why do location patterns change?
 - What do we know about it?
- Research Framework
 - How do we measure?
 - What do we test?
- Results
 - How have they changed?
 - Which factors explain it?
- **Discussion**
 - What have we learned?

Warehousing Decentralization

Why should we care?

- Warehousing and distribution centers (W&Ds)
 - NAICS493 "Warehousing and Storages"
 - An <u>intermediary</u> that connects <u>supply chain</u>
 - Part of goods production and distribution system
- Warehousing decentralization?

"...the phenomenon of relocation and concentration of <u>logistics facilities</u> toward suburban areas <u>outside city centre boundaries</u>"

Dablanc and Rakotonarivo (2010)

Why should we care?

- Growth of W&D and foreign trade since 2000
 - W&D jobs 33% \uparrow vs. All U.S. jobs 4% \uparrow ¹
 - Foreign trade 40% in \$ \uparrow vs. U.S. population 10% \uparrow ²
- Key segments of domestic goods movement (US) ³
 - Within metro-level 51% in tons
 - By truck 77% in tons

Data: 1) CBP 2003 & 2013; 2) USDOT Freight Facts and Figures, 2013; 3) FAF, 2015

Why should we care?

- W&Ds as truck trip generators
 - If W&Ds are located <u>farther from markets</u>
 - → <u>Truck travel would increase (VMT)</u>
 - \rightarrow <u>Impact</u> would increase
 - E.g. Tokyo case (Sakai, et al. 2015)

Negative externalities

- Congestion, increased fuel consumption, air pollution
- Noise, vibration, infrastructure damage
- Environmental justice issues

Why do location patterns change?

- **Economic restructuring** (Hesse and Rodrigue, 2004)
 - Globalized, geographically dispersed supply chains
 - Advances in transport tech. reduced transport costs
 - Advances in logistics tech. instant response, short dwell time
 - Access to national and global markets
 - Proximity to highways, rail and intermodal facilities
- More modernized and larger W&Ds (Dablanc and Ross, 2012)
 - Ship large volumes of goods frequently and reliably
 - Mega DC and automation
- Land price and availability
 - Low rent, large parcels, and favorable zoning

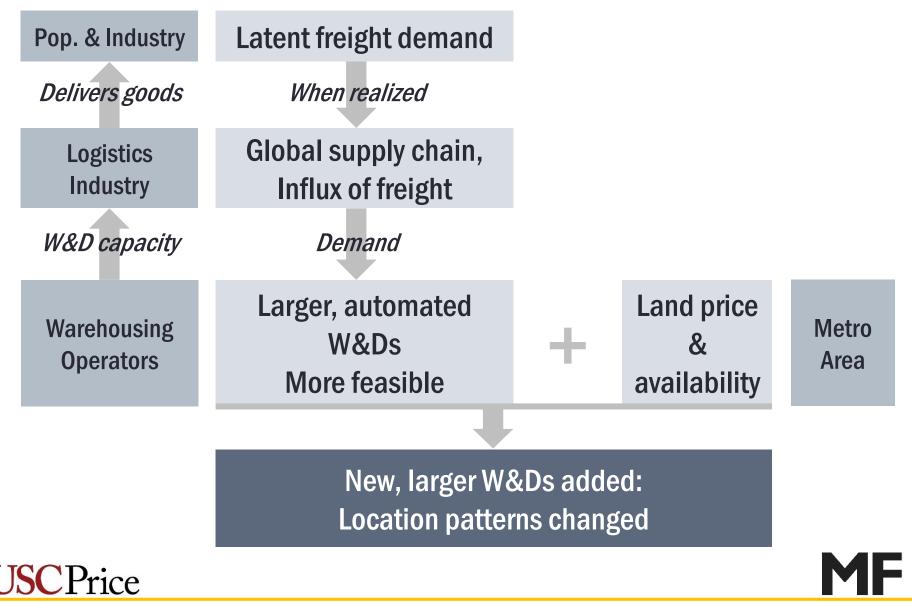
Is this really happening since 2000s?

For

- Distance to the geographical center of W&Ds has increased
 - Los Angeles, Atlanta, Toronto, and Paris (Tokyo)
- W&Ds have suburbanized
 - In UK metro areas
- Against
 - Distance to the geographical center of W&Ds has decreased
 - Seattle (Dablanc, et al. 2014)

Other measures

- W&D concentrated in counties with airport or more highways
- No systematic testing of factors for decentralization



Research Framework

Rationale behind W&D location change

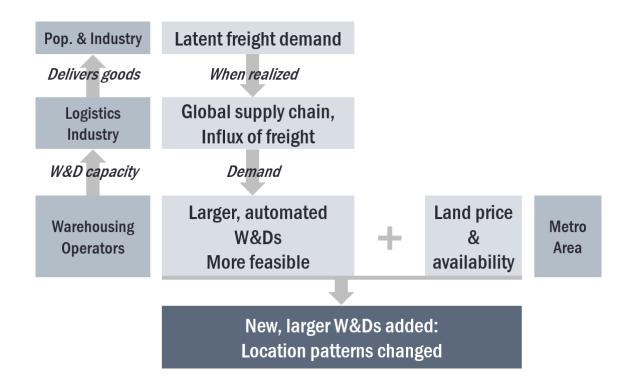
METROFREIGHT

Considerations and Research Goals

Across metro areas: Chance of location change varies

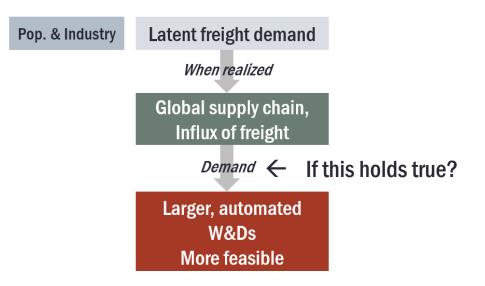
- Global supply chains via select metro areas
 - <u>78%</u> of all container import through <u>10</u> container port systems
 - Much greater demand for larger W&Ds!
- Land more restricted in certain places
 - Different level/distribution of land rent across metro areas

Research Goals


- To identify metro-level factors for W&D location change
- To test if metro-level heterogeneity results in different patterns of W&D location change
- To test if temporal changes in factors result in different patterns

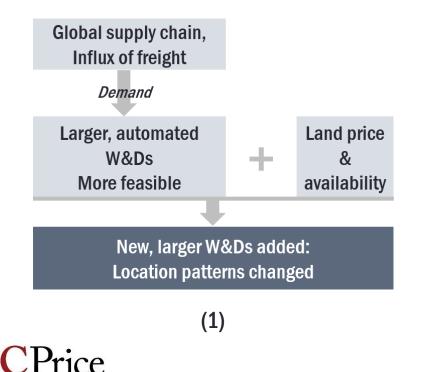
Freight flows and W&D size – Cross-section (OLS)

• $\Delta W\&D SIZE_{(i, from t to t+1)} = F(FLOWS_{(i,t)}, POP_{(i,t)})$



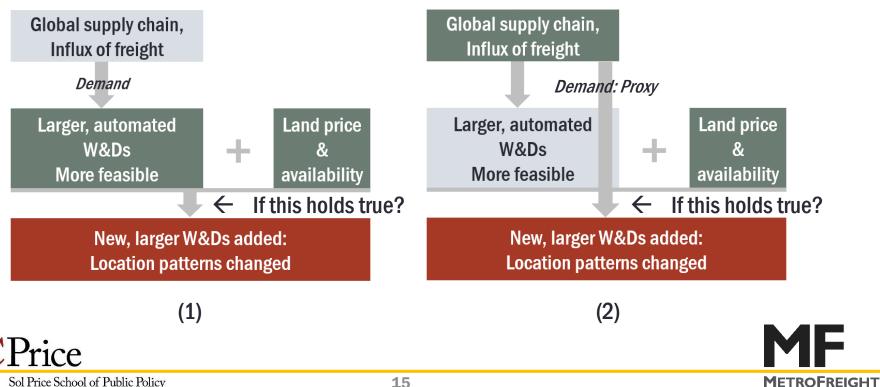
Freight flows and W&D size – Cross-section (OLS)

• Δ W&D SIZE (i, from t to t+1) = F (FLOWS (i,t), POP (i,t))



Heterogeneity Across Metro Areas – Cross-section (OLS)

(1) $\triangle W\&D DIST_{(i, from t to t+1)} = F(SIZE_{(i,t)}, LAND_{(i,t)})$ (2) $\triangle W\&D DIST_{(i, from t to t+1)} = F(FLOW_{(i,t)}, LAND_{(i,t)})$



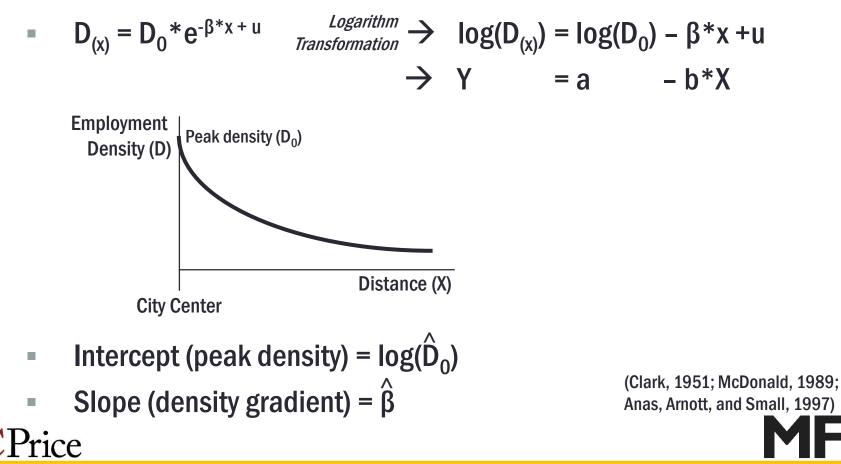
Sol Price School of Public Policy

Heterogeneity Across Metro Areas – Cross-section (OLS)

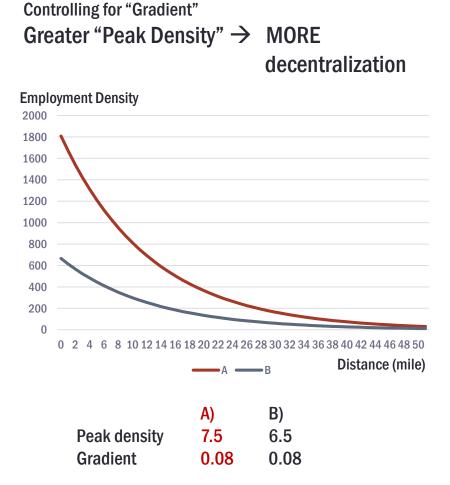
(1) $\triangle W \& D DIST_{(i, from t to t+1)} = F(SIZE_{(i,t)}, LAND_{(i,t)})$ (2) $\triangle W \& D DIST_{(i, from t to t+1)} = F (FLOW_{(i,t)}, LAND_{(i,t)})$

/olvo Center of Exce

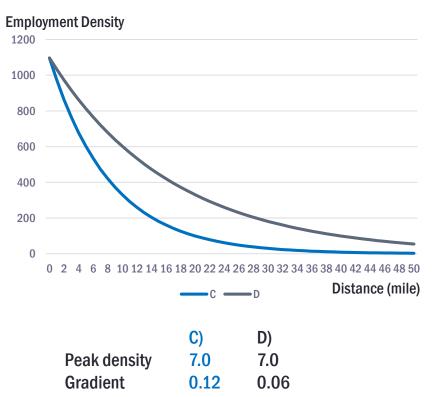
Measurement


W&D distribution

- Average distance from the CBD to all W&Ds by metro area
- Average distance from all employment to all W&Ds by metro area
- Δ W&D distribution = Ave. distance in 2013 Ave. distance in 2003
- W&D distribution (t) = Ave. distance (t) (t = 2003, 2008, 2013)
- W&D size
 - SIZE = W&D jobs / W&D establishments
 - Expectation: (+) Larger W&Ds \rightarrow MORE decentralization
- Freight flows (million tons)
 - Commodity Flow Survey (CFS), 2002, 2007, 2012
 - Expectation: (+) Greater freight flows \rightarrow MORE decentralization


Measurement – Land Rent

Spatial distribution of land rent approximated by <u>negative</u> <u>exponential curve</u> of employment density by ZIP Code


METROFREIGHT

Measurement – Land Rent

Controlling for "Peak Density" Steeper "Gradient" → LESS

decentralization

ce

Data

ZIP Code Business Patterns

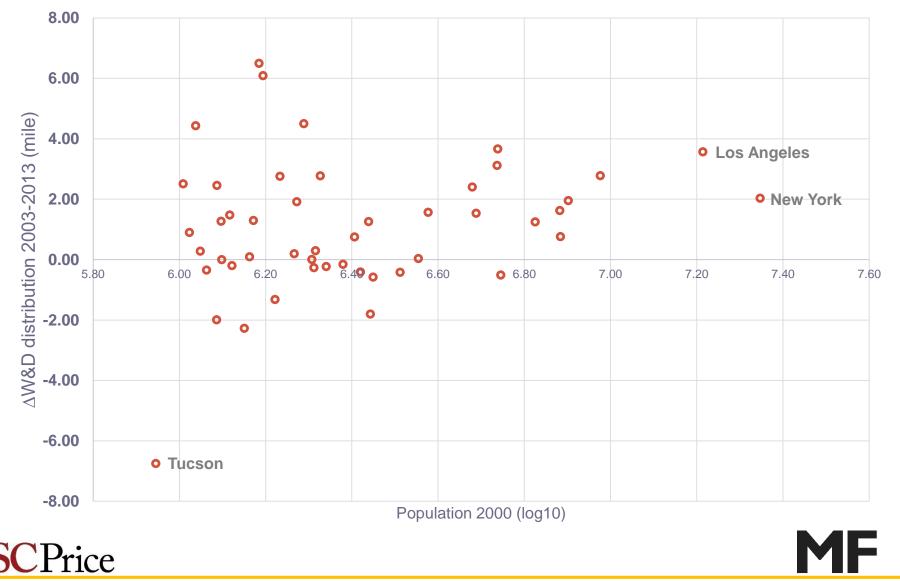
Location of WDCs

- **ZIP Code Business Patterns (2003-2013)**
 - A subset of CBP
 - Business Register: records of known establishments
 - Annual N of establishments, employment, and payroll
 - 6 digit NAICS codes; USPS ZIP Codes; cover entire U.S.
- Limitations
 - A large spatial unit; *TeleAtlas* centroids pinpoint location
 - Aggregated addresses, not geographically delimited
 - Size correlates with density, not with political boundaries

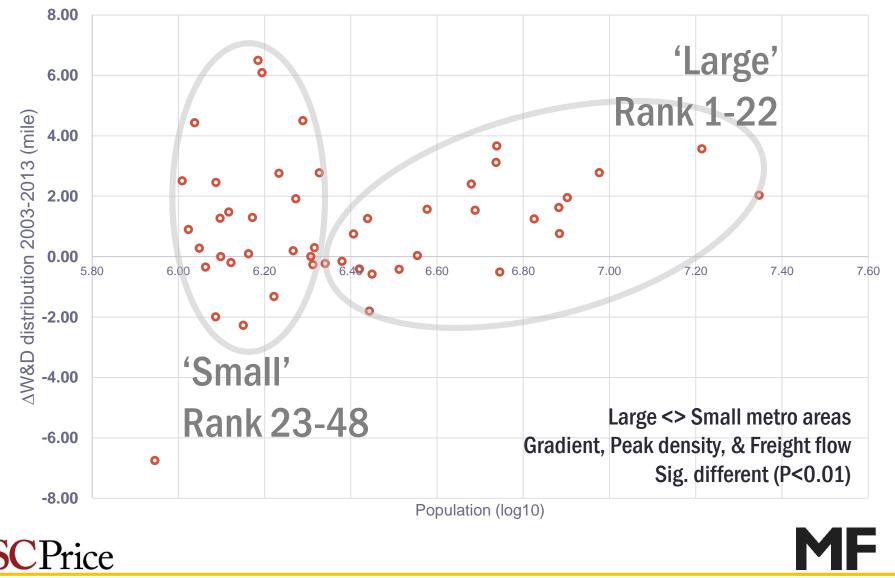
Results

Sample Metropolitan Areas (N=48)

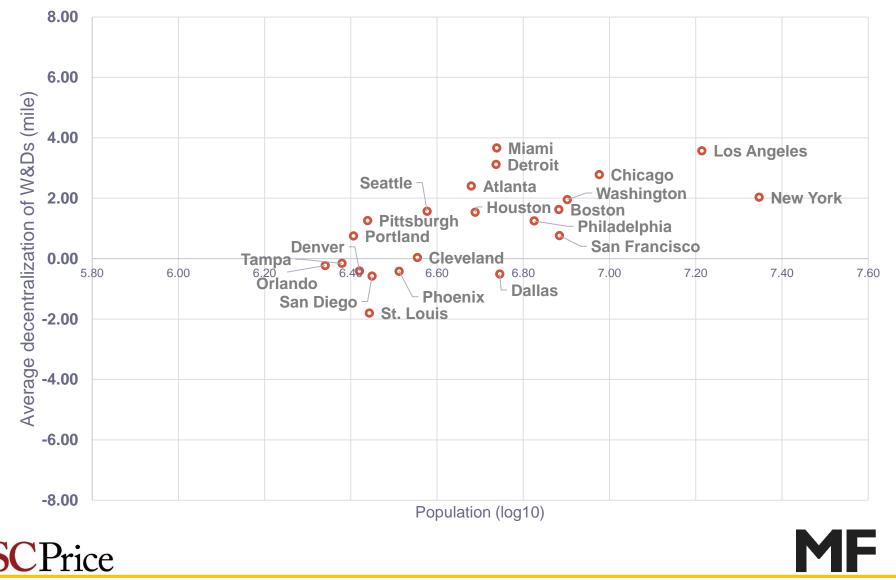
	Combined Statistical Areas & Metropolitan Statistical Areas
--	---


	New York, Los Angeles, Chicago, Washington, Boston, San Francisco, Dallas,
Rank 1-22 (N=22)	Philadelphia, Houston, Atlanta, Miami, Detroit, Seattle, Phoenix, Cleveland,
	Denver, St. Louis, Pittsburgh, San Diego, Portland, Orlando, Tampa

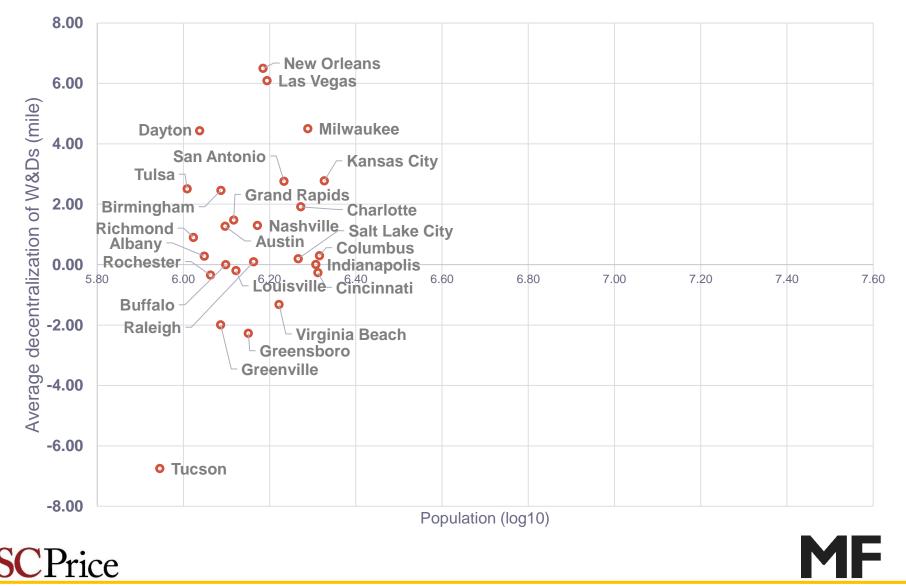
Rank 23-48
(N=26)Indianapolis, Charlotte, Kansas City, Columbus, Milwaukee, Cincinnati,Salt Lake City, Las Vegas, San Antonio, Nashville, Raleigh, Austin, Louisville,
Greensboro, Virginia Beach, Grand Rapids, New Orleans, Richmond,
Greenville, Buffalo, Birmingham, Rochester, Tulsa, Albany, Dayton, Tucson


W&D decentralization

Sol Price School of Public Policy


METROFREIGHT Volvo Center of Excellence

Non-linear W&D decentralization


METROFREIGHT

W&D decentralization (Rank 1-22)

METROFREIGHT Volvo Center of Excellence

W&D decentralization (Rank 23-48)

Sol Price School of Public Policy

METROFREIGHT Volvo Center of Excellence

Bivariate correlation table

Bivariate correlation Δ W&D distribution 2003-2013	All metro areas N=48	Metro areas Rank 1-22	Metro areas Rank 23-48
Population 2000 (log)	0.23	0.65	0.28
W&D Size (Employees per W&D) 2003	0.16	0.20	0.16
Total freight flow (M-ton) 2002	0.32	0.47	0.49
Gradient (β)	-0.06	-0.48	0.10
Peak Density (log(D ₀))	0.22	0.19	0.32

Model 2 results

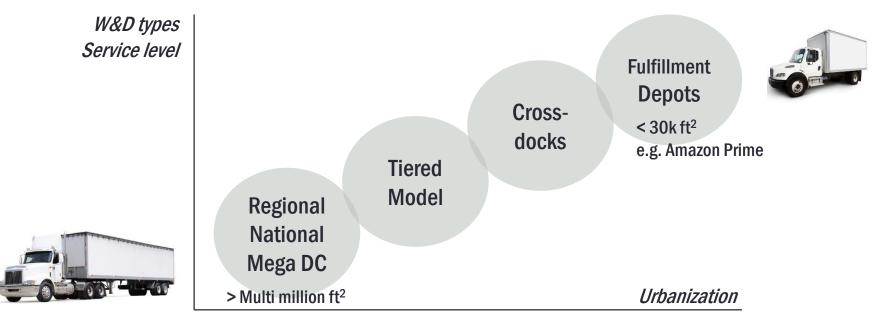
OLS (1): $\triangle W\&D DIST_{(i, from t to t+1)} = F (LAND_{(i,t)}, SIZE_{(i,t)}, FLOW_{(i,t)})$ OLS (2): $\triangle W\&D DIST_{(i, from t to t+1)} = F (LAND_{(i,t)}, FLOW_{(i,t)})$

Δ W&D Distribution 2003-2013	(1) SIZE and FLOW		(2) FLOW	
2003-2013	Std. Coef.	Sig.	Std. Coef.	Sig.
Gradient 2003	-0.566	* *	-0.580	* *
Peak density 2003	0.271	*	0.283	* *
Freight flow 2002	0.164	* *	0.161	* *
W&D Size 2003	0.124			
Small	-1.389		-1.250	
Small*Gradient 2003	0.649		0.662	
Small*Peak 2003	0.874		0.799	
Small*Flow 2002	0.403	*	0.415	*
Small*W&D Size 2003	0.050			
Constant				
R ²	0.364		0.344	
Ν	48		48	
** P<0.01; * P<0.05; + P<0.1				

Sol Price School of Public Policy

Summary

Δ W&D Distribution 2003-2013	Relationship	Exp. Power	As expected?
Gradient 2003	-		Yes
Peak density 2003	+	Moderate	Yes
Freight flow 2003	+		Yes
W&D size 2003	N/S	N/S	Νο



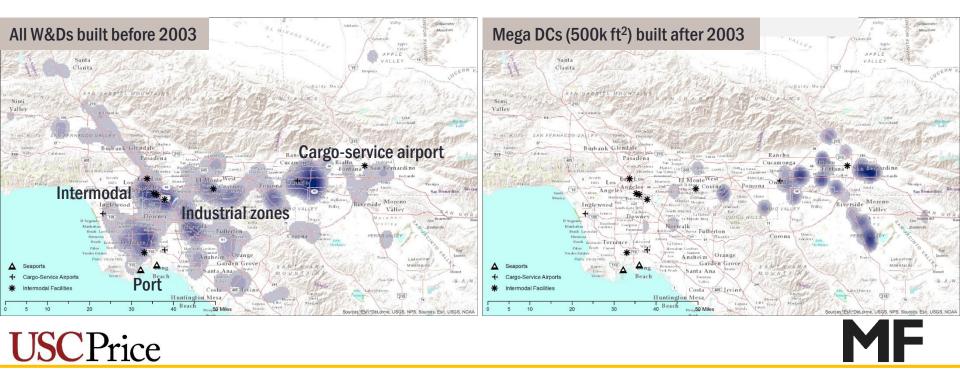
USC Price Sol Price School of Public Policy

Discussion

W&D SIZE

- Jobs per establishment?
- W&D SIZE in ft²

Source: Benjamin Conwell, Cushman & Wakefield


□ Different location patterns: outward/inward movement

Future research

Sub-metropolitan factors for W&D location?

- Land rent/availability, access to market/labor, proximity to freight infrastructure, proximity to similar sector, and land use regulation
- Discrete location choice factors in Los Angeles
- Different types of W&Ds at different time periods

METROFREIGHT

W&Ds have decentralized to <u>the urban peripheries</u> to transport <u>large volumes of goods frequently and reliably.</u>

Sanggyun Kang

Ph.D. Candidate in Urban Planning and Development METRANS Transportation Center

Sol Price School of Public Policy

University of Southern California

sanggyuk@usc.edu

