Planning for local delivery using sidewalk robots

Comparing optimized mothership vans methods

Wednesday, May 25, 2022

Jacob Lamb PhD Candidate Supervised by Prof. Chan Wirasinghe and Prof. Nigel Waters Civil Engineering Department University of Calgary, Canada

SC INTEGRATED INFRASTRUCTURE FOR SUSTAINABLE CITIES

Research Question and Agenda

School of Engineering

- 1. Introduction
 - 1. Past Research/Literature
 - 2. Vehicle Characteristics
- 2. Methodology
 - 1. Overview
 - 2. Example
 - 3. Analytical Results
- 3. Default Design Case Study
 - 1. Case Study Results
 - 2. Sensitivity Analysis
 - 3. Closed Form Results
- 4. Optimized Design
 - 1. Design Variables
 - 2. Changes and Impacts
 - 3. Example
- 5. Conclusions

Research Question: What different ways can Sidewalk Robots be deployed from Motherships?

Research Question: How can we estimate the travel distances on road and on sidewalks?

Research Question: How does the proposed Mercedes-Benz design compare with a conventional truck?

Research Question: Is the default design the cheapest way to implement the MS?

Introduction

Past Works, Terminology Contributions

Introduction – Technology and Terminology

SADR = Sidewalk Autonomous Delivery Robot

Vehicles of pedestrian scale, either fully autonomous or 'human-in-the-loop', that deliver light packages via a sidewalk network.

Also known as a "Person Delivery Device".

MS = MotherShip Van

Vehicles capable of carrying one or more SADR plus additional packages for replenishment. Travels via the road network. May be autonomous or driven by a human.

^HUII(

hool of Engine

Introduction – Proposal and Literature

Sept 2016: Mercedes-Benz and Starship Technologies released Mothership concept (video in appendix)

Reference	Classification of	MS Banned	SADR	Methodology	Author's Problem Terminology
	Strategy	from	Capacity		
		Delivery			
(Boysen et al.,	MS Series	Yes	1	Mixed-Integer Program	Truck-based Robot Delivery (TBRD)
2018)					
(Jennings &	MS Series	Yes	1	Continuum Approximation	No terminology provided.
Figliozzi, 2019)					
(Deng et al.,	MS Tandem	No	1 - 25	Exact MIP and a Genetic Algorithm	Vehicle Routing Problem with Movement Synchronization
_2020)				metaheuristic	(VRPMS)
(Simoni et al.,	MS Tandem	No	1 - 3	Dynamic Program of Integer Program	Weighted Interval Scheduling Problem (WISP) of Traveling
_2020)					Salesman Problem with Robot (TSP-R)
(Yu et al., 2020)	MS Parallel	Yes	1 - 50	MILP, hybrid multi-start metaheuristic	Two-Echelon Location Routing Problem (2E-LRP)
				including destroy and repair operators together	
				with a backtracking component	
(Chen, Demir, &	MS Parallel	No	10kg	Adaptive Large Neighborhood Search heuristic	Vehicle Routing Problem with Time Windows and Delivery
Huang, 2021)				algorithm	Robots (VRPTWDR)
(Chen, Demir,	MS Parallel	No	1	Meta-heuristic of Mixed-Integer Linear	Vehicle Routing Problem with Time Windows and Delivery
Huang, et al.,				Program	Robots (VRPTWDR)
2021)				-	
(Ostermeier et al.,	MS Parallel	Yes	1	Computational Heuristics and Algorithms	No terminology provided.
2022)					
(Yu et al., 2022)	MS Tandem and	No	1 - 50	MILP solved with an adaptive large	Two-Echelon, Van-based Robot Hybrid Pickup and Deliveries
	MS Parallel			neighborhood search algorithm	(2E-VRHPD); Parallel Van and Robot Scheduling Problem with
					Hybrid Pickup and Delivery operations (PVRSP-HPD); a Two-
					Echelon Vehicle Routing Problem with Hybrid Pickup and
					Delivery operations (2E-VRP- HPD)

Introduction – Strategy Terminology

All figures reprinted from cited publication with permission from Elsevier via STM authorization.

Introduction – Vehicle Characteristics

MS Capital Cost (α_s): \$222 per day MS Transport Cost (β_s): 17¢ per kilometer *Assumed Gasoline MS Van* SADR Capital Cost (α_s): \$3.52 per day SADR Transport Cost (β_s): 1.2¢ per kilometer Assumed Electric SADR

Assumptions:

Cost is modelled via travel distance; We do not consider vehicle speeds. Vehicles always used to full capacity. Capacities equal between similar vehicles. Operator may be a 3PL or company fleet. Routes pre-planned at regional warehouse, and routes are reliable (deterministic).

SCHUUIC

Introduction – Regional Terminology

Assumptions:

Uniform demand density (λ) Uniform touring constant (k = 0.87) Assumed Euclidean paths

SCHULIC

School of Engineeri

Sufficient MS fleet size (m) Sufficient SADR fleet size (s) Sufficient deployment locations (P)

Sufficient time to conduct deliveries.

Methodology

Overview, Example Application,

"Analytical Rules of Thumb" Table Summary

Methodology - Overview

- School of Engineering
- Goal: Determine analytical expressions for on-road and on-sidewalk travel distance for each system (MS Series, MS Parallel, Conventional Truck [CT]).
- Method: Apply the following equations* and adapt as necessary.

For one vehicle in a multi–vehicle routing problem, the tour distance estimate is:

$$l(c, n, a, d) = 2.d + \frac{k.\sqrt{a.}(c-1)}{\sqrt{n}}$$
$$l = distance \ per \ vehicle$$
$$c = vehicle \ capacity$$
$$a = service \ area$$

k = *touring constant*

For the fleet of vehicles in a multi-vehicle routing problem, the tour distance estimate is:

$$l_t(c, n, a, d) = 2 \cdot \frac{n}{c} \cdot d + \frac{k \cdot \sqrt{n \cdot a} \cdot (c - 1)}{c}$$

 l_t = distance for fleet n = number of delivery points d = logistical sprawl (add more)

Reminder: Vehicles always used to full capacity. Capacities equal between similar vehicles. *Equations adapted from Daganzo (2005) and Figliozzi (2008),

Methodology – Application Example MS Series

SCHULICH

School of Engineering

Methodology - Results

To minimize SADR distance use system in column compared to system in row

	MS-S	MS-P	СТ
MS-S		When the MS capacity is greater than the	CT has no sidewalk distance
		reload capacity.	
MS-P	When the reload capacity is greater than the		CT has no sidewalk distance
	MS capacity.		
СТ	CT has no sidewalk distance	CT has no sidewalk distance	

To minimize on-road (MS or CT) distance use system in column compared to system in row

	MS-S	MS-P	СТ
MS-S		Equal distances when MS Capacity is equal	When Reload Capacity is four less than
		to one.	SADR Capacity, at least three less.
MS-P	When MS Capacity is greater than one.		MS-P road distance always lower, or equal
			when SADR Capacity and MS Capacity
			equal one.
СТ	When SADR Capacity is up to two greater than	MS-P road distance always lower	
	the Reload Capacity.		

Example of analytical comparison of MS Series vs MS Parallel strategies in slide appendix. Please see upcoming publication for full explanation of each comparison.

Default Design Case Study

Evaluating the Mercedes Benz Mothership and Starship Technologies SADRs

Default Design to Evaluate

MS Package Capacity (C_c) = 54

Default Design Case Study Results

Vehicle ParametersModel Mercedes Mothership andStarship Technologies SADRs.Item Capacity (C_c) = 54 packagesSADR Capacity (C_s) = 1 packageMS Capacity (C_m) = 8 SADRsReload Capacity (θ) = 6.75 reloads

Unit Costs:

CT Capital Cost (α_s) :\$222 per day, \$80,000 purchaseCT Transport Cost (β_s) :17¢ per kilometer, \$1.38/litreMS Capital Cost (α_s) :\$222 per day, \$80,000 purchaseMS Transport Cost (β_s) :17¢ per kilometer, \$1.38/litreSADR Capital Cost (α_s) :\$3.52 per day, \$2540 purchaseSADR Transport Cost (β_s) :1.2¢ per kilometer, 6¢ /kWh

Total MS System Cost = Capital Cost per MS * Number of MS + MS Unit Transport Cost * MS Transport Distance + Capital Cost per SADR * Number of SADRs + SADR Unit Transport Cost * SADR Transport Distance

Total CT System Cost = Capital Cost per CT * Number of CT + CT Unit Transport Cost * CT Transport Distance

Default Design Case Study Sensitivity Analysis

		Default Value	Value for MS-Series TSC to equal CT TSC (% change)	Value for MS-Parallel TSC to equal CT TSC (% change)
	Logistical Sprawl	0	N/A	N/A
	Demand Density	50	N/A	0.021
ts	SADR Transport Cost	\$0.0126	N/A	N/A
Resu	SADR Capital Cost	\$3.52	N/A	\$0.072 (-98%)
	MS Transport Cost	\$0.1725	N/A	N/A
	MS Capital Cost	\$222.22 (\$22.22 vehicle + \$200 labor)	\$191.57 (-14%)	\$194.63 (-12%)
	CT Package Capacity	54	47 (-13%)	48 (-11%)

Default Case Study Experimental

SCHULICI

Default Design Insights from Closed Form

	<u>SADR Capital Cost (a_s): \$3.52 per day</u>		<u>SADR Capital Cost (α_s): \$0.1725 per day</u>	
Vehicle ParametersModel Mercedes Mothership andStarship Technologies SADRs.Item Capacity (C_c) = 54 packagesSADR Capacity (C_s) = 1 packageMS Capacity (C_m) = 8 SADRsReload Capacity (θ) = 6 75 reloads	day per sq.km	Conventional Truck is cheaper	packages per day per sq.km	Conventional Truck is cheaper
Reloud Cupacity (0) = 0.75 Telouds	per (MAX = 8.34 packages per sq.km
nit Costs:Same and the second se	packages	SADR battery range not sufficient		MS CheaperTSC2 < TSC3& SADR FeasibleDS2 < RS
MS Capital Cost (α_s) :	sity,	MIN = 5.04 packages per sq.km	sity,	MIN = 5.04 packages per sq.km
$\begin{array}{c c} \$222 \ per \ day \\ MS \ Transport \ Cost \ (\beta_s): \\ 17 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Demand Den	No cross-over range MAX = 0.02 packages per sq.km	Demand Den	SADR battery range not sufficient

School of Engineerin

Optimized Design

Evaluating the Mercedes Benz Mothership and Starship Technologies SADRs

Optimized Design – Problem Definition

Objective:	MINIMIZE Total System Cost (depends on MS Strategy).
Method:	Integer Program Solver, Excel, Exhaustive Search
Subject to:	SADR Range Constraint (depends on MS Strategy). SADR Capacity, integer between 1 and 8 MS Capacity, integer between 1 and 8

SCHULICH

School of Engineerin

Optimized Design – Changes and Impacts

SCHULICE

School of Engineering

Optimized Design – Example Varying Parameter

2.

SCHULICH

School of Engineerin

Thank you!

For more information or to submit further questions direct to me contact:

Email:	
IISC:	
Profile:	

And await publication in review.

INTEGRATED INFRASTRUCTURE FOR SUSTAINABLE CITIES

 R^{G}

in 8

References

- Boysen, Nils, Stefan Fedtke, and Stefan Schwerdfeger. 2020. "Last-Mile Delivery Concepts: A Survey from an Operational Research Perspective." OR Spectrum 43 (1). Springer Berlin Heidelberg: 1–58. doi:10.1007/s00291-020-00607-8.
- Chen, Cheng, Emrah Demir, and Yuan Huang. 2021. "An Adaptive Large Neighborhood Search Heuristic for the Vehicle Routing Problem with Time Windows and Delivery Robots." European Journal of Operational Research 294 (3). Elsevier B.V.: 1164–80. doi:10.1016/j.ejor.2021.02.027.
- Chen, Cheng, Emrah Demir, Yuan Huang, and Rongzu Qiu. 2021. "The Adoption of Self-Driving Delivery Robots in Last Mile Logistics." Transportation Research Part E: Logistics and Transportation Review 146 (November 2020). Elsevier Ltd: 102214. doi:10.1016/j.tre.2020.102214.
- Choi, Youngmin, and Paul M. Schonfeld. 2021. "A Comparison of Optimized Deliveries by Drone and Truck." Transportation Planning and Technology 0 (0). Taylor & Francis: 1–18. doi:10.1080/03081060.2021.1883230.
- Deng, Puyuan, Glareh Amirjamshidi, and Matthew Roorda. 2020. "A Vehicle Routing Problem with Movement Synchronization of Drones, Sidewalk Robots, or Foot-Walkers." Transportation Research Procedia 46 (2019). Elsevier B.V.: 29–36. doi:10.1016/j.trpro.2020.03.160.
- Jennings, Dylan, and Miguel Figliozzi. 2019. "Study of Sidewalk Autonomous Delivery Robots and Their Potential Impacts on Freight Efficiency and Travel." Transportation Research Record 2673 (6): 317–26. doi:10.1177/0361198119849398.
- Ostermeier, Manuel;, Andreas Heimfarth, and Alexander Hübner. 2022. "Networks 2021 Ostermeier Cost-optimal Truck-and-robot Routing for Last-mile Delivery.Pdf." Networks 79: 364–89.
- Simoni, Michele D., Erhan Kutanoglu, and Christian G. Claudel. 2020. "Optimization and Analysis of a Robot-Assisted Last Mile Delivery System." Transportation Research Part E: Logistics and Transportation Review 142 (June). Elsevier: 102049. doi:10.1016/j.tre.2020.102049.
- Yu, Shaohua, Jakob Puchinger, and Shudong Sun. 2020. "Two-Echelon Urban Deliveries Using Autonomous Vehicles." Transportation Research Part E: Logistics and Transportation Review 141 (June). Elsevier: 102018. doi:10.1016/j.tre.2020.102018.
- Yu, Shaohua, Jakob Puchinger, and Shudong Sun.. 2022. "Van-Based Robot Hybrid Pickup and Delivery Routing Problem." European Journal of Operational Research 298 (3). Elsevier B.V.: 894–914. doi:10.1016/j.ejor.2021.06.009.

Appendix – Industry Video

Appendix – Problem

Figure 5. Trends in vehicle numbers in Canada

Data source: Environment and Climate Change Canada¹⁶

Bora, Plumptre, Eli Angen, and Dianne Zimmerman. 2017. "The State of Freight: Understanding Greenhouse Gas Emissions from Goods Movement in Canada." https://www.pembina.org/reports/state-of-freight-report.pdf.

US-based MSs: Starship Robots and Mercedes Benz (top), Digit by Ford (middle), ANYmal by ANYbotics (bottom) 26

Appendix – Analytical Comparison

SCHULICE

School of Engineerir

Total MS System Cost = Capital Cost per MS * Number of MS + MS Unit Transport Cost * MS Transport Distance + Capital Cost per SADR * Number of SADRs + SADR Unit Transport Cost * SADR Transport Distance

$$TSC_{\#} = \alpha_{m}.m + \beta_{m}.TD_{R\#} + \alpha_{s}.s + \beta_{s}.TD_{S\#}$$

$$TSC_{1} = \alpha_{m} \cdot \frac{A \cdot \lambda}{C_{c}} + \beta_{m} \cdot \left(\frac{2 \cdot d \cdot A \cdot \lambda}{C_{c}} + \frac{(\theta + 1) \cdot k \cdot A \cdot \sqrt{\lambda}}{\sqrt{\theta \cdot C_{s}}}\right) + \alpha_{s} \cdot \frac{A \cdot \lambda}{\theta \cdot C_{s}} + \beta_{s} \cdot \left(\frac{4 \cdot A \cdot \sqrt{\lambda \cdot \theta}}{3 \cdot \sqrt{\pi \cdot C_{s}}} + \frac{A \cdot k \cdot \sqrt{\lambda} \cdot (C_{s} - 1)}{C_{s}}\right)$$
$$TSC_{2} = \alpha_{m} \cdot \frac{A \cdot \lambda}{C_{c}} + \beta_{m} \cdot \left(\frac{2 \cdot d \cdot A \cdot \lambda}{C_{c}} + \frac{k \cdot A \cdot \sqrt{\lambda} \cdot (\theta - 1)}{\sqrt{C_{c} \cdot \theta}}\right) + \alpha_{s} \cdot \frac{A \cdot \lambda}{\theta \cdot C_{s}} + \beta_{s} \cdot \left(\frac{4 \cdot A \cdot \sqrt{\lambda \cdot C_{c}}}{3 \cdot C_{s} \sqrt{\pi \cdot \theta}} + \frac{k \cdot A \cdot \sqrt{\lambda} \cdot (C_{s} - 1)}{C_{s}}\right)$$

Total CT System Cost = Capital Cost per CT * Number of CT + CT Unit Transport Cost * CT Transport Distance

$$TSC_3 = \alpha_c \cdot \frac{A \cdot \lambda}{C_c} + \beta_c \cdot \left(\frac{2 \cdot d \cdot A \cdot \lambda}{C_c} + \frac{k \cdot A \cdot \sqrt{\lambda} \cdot (C_c - 1)}{C_c}\right)$$

Appendix – Constraint Equations

Range L.B. Constraint

\$Cheaper than CT U.B. Limit

$$\lambda > \left(\frac{4.\sqrt{C_{c}}}{3.R_{s}.\sqrt{\pi.C_{m}}} + \frac{k.C_{c}.(C_{s}-1)}{R_{s}.C_{s}.C_{m}}\right)^{2} \lambda < \left(\frac{\beta_{c}.k.(C_{c}-1).C_{s}.C_{m} - \beta_{m}.k.\sqrt{C_{m}.C_{c}^{-3}} - \beta_{m}.k.C_{s}.\sqrt{C_{m}^{-3}.C_{c}} - \frac{4.\beta_{s}.\sqrt{C_{m}.C_{c}^{-3}}}{3.\sqrt{\pi}} - \beta_{s}.k.C_{c}.C_{m}.(C_{s}-1)}\right)^{2} \alpha_{m}.C_{s}.C_{m} + 2.\beta_{m}.d.C_{s}.C_{m} + \alpha_{s}.C_{m}^{-2}.C_{s} - \alpha_{c}.C_{s}.C_{m} - 2.\beta_{c}.d.C_{s}.C_{m}}$$

Appendix – Future Work

- Time Windows:
 - May be more appropriate to compare **two MS time windows against a longer CT tour.**
 - Further investigation of **time-window constraints in continuum approximation**, (Jennings and Figliozzi, 2019).

System 1: MS-Series

System 2: MS-Parallel

- Develop and validate **open vehicle routing approximations** so that Tandem SADR deployment systems may be modelled.
- Develop and validate **different routing parameters** (**k**) more appropriate for small capacity vehicles and for small scale pathing, (Choi and Schonfeld, 2021)

System 3: Conventional Truck