The business case for autonomous deliveries: does it exist?

An economic analysis of the use of autonomous vehicle technology for last mile deliveries

Kartik Varma ${ }^{12}$ supervised by François Combes ${ }^{1}$ Pierre Eykerman ${ }^{2}$

${ }^{1}$ SPLOTT Laboratory, Universite Gustav Eiffel
${ }^{2}$ Innovation and Research Department, Groupe Renault

26 May 2022

Urban Population as a Percentage of Total Population

Introduction Urban Population

E-Commerce Context

Autonomous Vehicles

Methodology
Modelling
Overview
Summary
Literature
Service Penalty
Market Segments
Math
Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

Urban Population (\% of total population)

The rise of e-commerce

Introduction Urban Population E-Commerce Contert

Autonomous Vehicles

Methodology
Modelling
Overview
Summary
Literature
Service Penalty
Market Segments Math

Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

Delivery Amount (Unit : Million Box)

Unit Price
(Unit : \$/Box)

Renault, LCVs and AVs

■ Groupe Renault manufacturers Light Commercial Vehicles. These

■ are used extensively for Last Mile Deliveries (LMDs).

- contribute significantly to the revenue of the firm.

■ A new technology arises; Autonomous Vehicles (AVs).

- These vehicles may be used for LMDs.
- This may impact LCV sales.
- Do these vehicles have a business case for LMDs?
- Removal of driver creates value.
- Private perspective.

Autonomous Single Delivery Vehicle

Introduction Urban Population E-Commerce Context

Autonomous Vehicles

Methodology
Modelling Overview Summary Literature
Service Penalty Market Segments Math

Results
Cost per Delivery
Winning Combination

Conclusion
Appendixes

ASDVs make a single delivery at a time. Here is Amazon Scout. It goes slow, can use sidewalks.

Autonomous Multiple Delivery Vehicle

Introduction Urban Population E-Commerce Contert

Autonomous Vehicles

Methodology
Modelling Overview Summary Literature
Service Penalty Market Segments Math

Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

AMDVs make multiple deliveries in 1 round. Here is Nuro; it makes 4. It goes fast, uses roads.

Methodology

- Prospective analysis
- A cost structure of last mile deliveries is modelled, and then extended.
- Data was gathered from three sources

■ Academic Literature and Professional Reports

- Interviews
- Field Visits

■ Operational context/constraints identified, understood and modelled.

Modelling: Overview

Introduction

 Urban Population E-Commerce ContextAutonomous Vehicles

Methodology
Modelling
Overview
A

C

Smaller warehouse at $\mathbf{1 k m}$ from Customers

Modelling: Summary

Introduction Urban Population E-Commerce Context

Autonomous Vehicles

Methodology
Modelling
Overview
Summary
Literature
Service Penalty
Market Segments
Math
Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

Distance from Warehouse	Size of Warehouse	Average distance b/w customers	Vehicle Used ${ }^{1}$	Market Segment	Output
1 km 10 km 30 km	$\begin{aligned} & 7500 \mathrm{~m} 2 \\ & 15000 \mathrm{~m} 2 \\ & 25000 \mathrm{~m} 2 \\ & 40000 \mathrm{~m} 2 \end{aligned}$	0.5 km 0.6 km 0.7 km 5 km	Diesel Van Electric Van Cargo Bike ASDV ${ }^{2}$ AMDV ${ }^{3}$	Parcels Groceries B2B ${ }^{4}$	Cost/Delivery

${ }^{1}$ Assumption: Fleet is unimodal
${ }^{2}$ Autonomous Single Delivery Vehicle
${ }^{3}$ Autonomous Multiple Delivery Vehicle
${ }^{4}$ Business to Business

Literature Overview

- Previous Literature
- Total Cost of Ownership (TCO) approach for vehicle choice
- (Lebeau et al.,2019), (Figenbaum,2018), (Camilleri,2017)
- Warehouse Location - (Combes, 2019)
- Autonomous Vehicles - (Figliozzi, 2019, 2020)
- Contribution
- Creation of integrated model (warehouse location AND vehicle choice)
- Include real world operational constraints

■ Account for heterogeneity of LMDs - different Market Segments

- Level of service penalty

■ Driver/Deliverer experience

Level of Service Penalty

Table: Level of Service Penalty

	Task	Handled by in Conventional Delivery	Handled by in Autonomous De- livery
1.	Navigating	Driver	Vehicle
2.	Calling and notifying cus- tomer of arrival	Driver	Vehicle
3.	Locating merchandise in storage	Driver	Customer
4.	Unloading merchandise	Driver	Customer
5.	Delivering merchandise to end customer	Driver	Customer (collects it himself)
6.	Getting proof of success- ful delivery from cus- tomer	Driver	Vehicle (registers opening/closing of door)

Market Segments

Table: Market Segments considered for Analysis.

Variables	Unit	Parcels	Groceries	B2B 5
Deliveries per Round	-	$100+$	20	20
Avg. Weight/Delivery	Kg	0.3	25	50
Time per Delivery	Minutes	3	12	12
Vehicle Refrigerated	-	No	Yes	No
Level of Service Penalty 6	$€ /$ Delivery	1.5	3	5

Values above for Diesel Van.

[^0]
Modelling: Math

Deliveries $/$ Week $=f($ Vehicle, MarketSegment, CustomerDensity, SpeedBetweenDeliveries, LocationofWarehouse, ApproachSpeed)

Results: Scenarios

Introduction Urban Population E-Commerce Context

Autonomous Vehicles

Methodology
Modelling
Overview
Summary
Literature
Service Penalty
Market Segments Math

Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

Scenarios	Purchase Costs(Euros)		Losses Linked to Driver Experience	Costs Linked to Remote Opera- tors	Level of Service Penalty	Driver Wage per Hour
Scenario 1	SDAV $=250,000$	MDAV $=300,000$	None	None	None	11.17 €
Scenario 2	SDAV $=250,000$	MDAV $=300,000$	20\% loss of deliveries per day	$\begin{aligned} & 1 \text { remote } \\ & \text { operator } \\ & \text { for } 20 \\ & \text { vehicles } \end{aligned}$	1.5,3 and 5 Euros acc. to Market Segment	$11.17 €$
Scenario 3	SDAV = Price of Cargo Bike (7,890)	MDAV $=$ Price of Electric Van $(64,643)$	20\% loss of deliveries per day	$\begin{aligned} & 1 \text { remote } \\ & \text { operator } \\ & \text { for } 20 \\ & \text { vehicles } \end{aligned}$	1.5,3 and 5 Euros acc. to Market Segment	$11.17 €$
Scenario 4	SDAV = Price of Cargo Bike (7,890)	MDAV $=$ Price of Electric Van $(64,643)$	20\% loss of deliveries per day	$\begin{aligned} & 1 \text { remote } \\ & \text { operator } \\ & \text { for } 20 \\ & \text { vehicles } \end{aligned}$	None	$11.17 €$
Scenario 5	SDAV = Price of Cargo Bike (7,890)	MDAV $=$ Price of Electric Van $(64,643)$	20\% loss of deliveries per day	$\begin{aligned} & \hline 1 \text { remote } \\ & \text { operator } \\ & \text { for } 20 \\ & \text { vehicles } \end{aligned}$	None	80 cents
Scenario 6 (Green Vehicles Only)	SDAV = Price of Cargo Bike (7,890)	MDAV $=$ Price of Electric Van $(64,643)$	20\% loss of deliveries per day	$\begin{aligned} & 1 \text { remote } \\ & \text { operator } \\ & \text { for } 20 \\ & \text { vehicles } \end{aligned}$	None	80 cents

Table: Scenarios

Cost per delivery: S1, Parcels

Introduction

 Urban Population E-Commerce ContertAutonomous Vehicles

Methodology
Modelling
Overview
Summary
Literature
Service Penat ty
Market Segments
Math
Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

Cost Per Delivery as a function of Distance between Deliveries (Market Segment = Parcel). Scenario 1.

Cost per delivery: S1, Groceries

Introduction Urban Population E-Commerce Contert

Autonomous Vehicles

Methodology
Modelling
Overview
Summary
Literature
Service Penalty
Market Segments
Math
Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

Cost Per Delivery as a function of Distance between Defiveries (Market Segment = Groceries). Scenario 1.
Vehicles compored = Diesel Van, Electric Van, Cargo Bike, Autanomous Single Delivery Vehicle, Autonomous Mutiple Deliwery Vehicle Warehouse located at 1,10 or 30 kn away from customers.

Cost per delivery: S1, B2B

Introduction

 Urban Population E-Commerce ContertAutonomous Vehicles

Methodology
Modelling
Overview
Summary
Literature
Service Penality
Market Segments
Math
Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

Cost Per Delivery as a function of Distance between Deliveries (Market Segment = B2B). Scenario 1.
Vehicles compered = Diesel Van, Electric Van, Electric Carros Bke, Mutiple Dehivery Autonomous Vehicle. Warehouse located at 1,10 or 30 km away from customers

Optimal Warehouse Location/Vehicle Combination

- Warehouse location and vehicle choice are not independent:

■ Some vehicles - ex. Cargo Bikes - are severely limited by their autonomy

- Comparing TCO over different vehicles is not appropriate if some vehicles have different operational constraints
■ A logistics firm will choose a combination of warehouse location/vehicle type that offers the least cost per delivery.

Optimal Warehouse Location/Vehicle type: S1

Introduction Urban Population E-Commerce Contert

Autonomous

 VehiclesMethodology
Modelling
Overview
Summary
Literature
Service Penalty
Market Segments
Math
Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

Most competive vehicle-warehouse location combination per market segment. Scenario 1 Three wa ehouse loc:aions ase compared; $1 \mathrm{~km}, 10 \mathrm{~km}$, and 30 km from the frist deflery, Market Segment $=$ Parcels

Market Segment $=$ Groceries

Distaxce Eetween Detweries (km)

Market Sogment $=\mathrm{B} 2 \mathrm{~B}$

Optimal Warehouse Location/Vehicle type: S4

Introduction Urban Population E-Commerce Context

Autonomous

 VehiclesMethodology
Modelling
Overview
Summary
Literature
Service Penalty
Market Segments
Math
Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

Most competitive vehicle-warehouse location combination per market segment. Scenario 4: Customers indifferent to level of sarvice. Thre warehouse loc:aions ase compared, $1 \mathrm{~km}, 10 \mathrm{~km}$, and 30 km from the frost defleery.

Market Segment $=$ Parcels

$$
\begin{aligned}
& +20 \times 2
\end{aligned}
$$

Distance fetween Defiveries (kmi)
Market Segment $=$ B2B

Optimal Warehouse Location／Vehicle type：Low Wage regions

Introduction Urban Population E－Commerce Context

Autonomous

 VehiclesMethodology
Modelling
Overview
Summary
Literature
Service Penalty
Market Segments Math

Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

Most competitive vehicle－warehouse location combination per market segment．Scenario：Low Wage Geographical Regions． Three warehouse locations are compared； $1 \mathrm{~km}, 10 \mathrm{~km}$, and 30 km from the frsct defleery．
Market Segment＝Parcels

$$
\begin{aligned}
& \text { Vehicle } \\
& \text { onan }
\end{aligned}
$$

Ditance Between Delireries (km)
Market Segment = Groceries

> Market Segment = B2B

Distance Between Delireries（kn）

$$
\begin{aligned}
& \text { 高落 }
\end{aligned}
$$

Conclusion

■ Model which compares cost per delivery over different vehicles, warehouse locations, size, customer densities and market segments is developed.

- Competitiveness domains for different vehicles are determined.
- Conventional vehicles extremely efficient under current operating scenario.
- If AV s become cheaper, and service penalty is borne by customers, AV s are competitive for certain market segments, under certain conditions.
- Future work: Model to be extended to mixed fleets, question of lead time to be addressed.

Contact

Introduction

Urban Population
E-Commerce
Contert
Autonomous
Vehicles
Methodology
Modelling
Overview
Summary
Thanks for your time and insights!
Literature
Service Penaty
Market Segments
e-mail: kartik.varma@univ-eiffel.fr

Math

Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

Model: Overview

■ In this theses, a microeconomic model of cost per delivery is developed. Its components are

■ Warehouse

- Vehicles

■ Elements specific to the use of AECS vehicles

Appendix 1: Warehouse Costs

A warehouse consists of

- A physical structure at a location

■ Employees
■ Equipment, Electricity, Maintenance etc.
warehouse $_{\text {costs }}=$ warehouse $_{\text {rent }}+$

$$
\text { warehouse }_{\text {employeecost }}+\text { warehouse }_{\text {othercosts }}
$$

The following assumptions are made;

- A logistic firm requires a warehouse for its cross-docking operations.
- This warehouse is rented.
- Firm operates only 1 warehouse with unimodal fleet.
- Equipment, Electricity, Maintenance and other costs are assumed to be dependant on Market segment to which warehouse caters.

Warehouse Rent: Size, Location

The rent of a warehouse depends on two criteria;

- its size and,
- its distance from the city center.

Based on data from property rental sites, this can be expressed as;

$$
\begin{equation*}
\text { warehouse }_{\text {rent }}=\left(0.0003 *\left(w h_{d}^{4}\right)-0.04 *\left(w h_{d}^{3}\right)+2.15 *\left(w h_{d}^{2}\right)-43.1 *\left(w h_{d}\right)+392.3\right. \tag{6}
\end{equation*}
$$

Where warehouse $_{\text {rent }}$ is the rent per square meter and $w h_{d}$ is the distance of the warehouse from city center.

Warehouse Rent: Size, Location (contd.)

Introduction
Urban Population E-Commerce Contert

Autonomous Vehicles

Methodology
Modelling
Overview
Summary
Literature
Service Pernalty
Market Segments Math

Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

Warehouse Rent per Square Meter as a Function of Distance from City Center for lle de France region. City center is taken as Place du Chatelet.

Warehouse Size and Number of Employees

Introduction Urban Population E-Commerce Context

Autonomous Vehicles

Methodology
Modelling
Overview
Summary
Literature
Service Penalty
Market Segments Math

Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

Based on available (limited) data, the number of employees as a function of the size of the warehouse follows a linear relation.

$$
\begin{equation*}
\text { warehouse }_{\text {employeecost }}=\text { warehouse }_{\text {size }} * \text { employees }_{m 2} * \text { cost }_{\text {employee }} \tag{7}
\end{equation*}
$$

Number of Employees as a function of Warehouse Size

Warehouse: other costs

Apart from rental costs, and wage costs to employees, there are other costs in running a warehouse. These include, but are not limited to;

■ Equipment costs
■ Electricity costs
■ Maintenance costs
Equipment costs include the costs of sorting machines, or Automated Storage and Retrieval Machine, which are extremely expensive.

Warehouse: other costs (contd.)

All other costs, not indicated by rent or employment costs are represented by the greek letter δ.

$$
\begin{equation*}
\text { warehouse }_{\text {othercosts }}=\delta \tag{8}
\end{equation*}
$$

In this model it is assumed that for a given market segment, for a given warehouse size, these other costs are the same. These costs are not known. This creates a problem that can be tackled in at least two ways;

1 calibrate model such that cost/delivery reflect real world values. ${ }^{7}$
2 subtract the min. cost/delivery from all other costs/delivery for each configuration such that δ is removed.

[^1]
Warehouse: other costs (contd.)

Introduction

Urban Population
E-Commerce
Context
Autonomous Vehicles

Methodology
Modelling
Overview
Summary
Literature
Service Penalty
Market Segments Math

Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

Method 2 can be represented as:

$$
\text { warehouse }_{\text {costs }}^{\text {configuration } 1}=\text { warehouse }_{\text {rent }}^{\text {configuration } 1}+
$$

warehouse employeecost

$$
\text { warehouse }_{\text {costs }}^{\text {configuration2 }}=\text { warehouse }_{\text {rent }}^{\text {configuration2 }}+
$$

$$
\text { warehouse }_{\text {employeecost }}^{\text {configuration } 2}+\text { warehouse othercosts }
$$

Warehouse: other costs (contd.)

As for a given configuration (warehouse location, warehouse size, customer density, vehicle, market segment),

$$
\begin{equation*}
\text { warehouse }_{\text {othercosts }}^{\text {configuration } 1}=\text { warehouse }_{\text {othercosts }}^{\text {configuration } 2}=\delta \tag{11}
\end{equation*}
$$

From 9, 10 and 11 we have;
warehouse $_{\text {costs }}^{\text {configuration } 1}-$ warehouse $_{\text {costs }}^{\text {configuration2 }}=$ warehouse $_{\text {rent }}^{\text {configuration }}$ - warehouse rent $_{\text {configuration }}+$ warehouse employeecost - warehouse employeecost

Warehouse Size and Throughput

Throughput of a warehouse is assumed proportional to its size.

$$
\begin{array}{r}
\text { warehouse }_{\text {throughput } \propto \text { warehouse }_{\text {size }}}^{\text {warehouse }_{\text {throughput }} \propto \text { fleet }_{\text {size }}} \begin{array}{r}
\text { warehouse } \\
\text { size }
\end{array} \propto \text { fleet }_{\text {size }} \\
\text { warehous }_{\text {size }}=k * \text { fleet }_{\text {size }}
\end{array}
$$

■ Width and number of bays are determined using Google Maps.
■ Area of warehouse is determined using Google Maps.

■ Number of vehicles per square meter is thus calculated.

Warehouse Size and Throughput (contd.)

Introduction Urban Population E-Commerce Context

Autonomous Vehicles

Methodology Modelling Overview
Summary
Literature
Service Penalty
Market Segments
Math
Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

From above images;
■ Area of building $=48 \mathrm{~m} * 248 \mathrm{~m}=11904 \mathrm{~m} 2$

- Length required by 1 vehicle $=3 \mathrm{~m}$

■ Length of warehouse $=248^{*} 2=496 \mathrm{~m}$
■ No. of vehicles $=496 / 3=165.33$
■ No. of vehicles $/ \mathrm{m} 2=165.33 / 11904=0.014$ vans $/ \mathrm{m} 2$
■ No. of vehicles $/ \mathrm{m} 2($ only 1 side $)=0.007$

Warehouse Size and Throughput (contd.)

■ No.vehicles/m2 depends on the type of vehicle.

- an ASDV is not as wide as a Cargo Bike is not as wide as an AMDV is not as wide as a Van.
- Area reqd(ASDV) $=0.5^{*}$ Area reqd(Van)
- Area reqd(Cargo Bike) $=0.7^{*}$ Area reqd(Van)
- Area reqd (AMDV) $=0.8^{*}$ Area reqd(Van)

Total Cost of Ownership (TCO) of a Vehicle

- The TCO is a widely used approach to compare different cost structures over differing vehicle technologies.
■ It involves comparing actualised costs for each period over the life of a vehicle. These costs include;
- Costs independent of distance travelled

■ Purchase, resale, insurance, subsidies
■ Costs dependent on distance travelled
■ Fuel, maintenance

Vehicles Compared for TCO Analysis

■ Maximum number of deliveries a vehicle can accomplish in a day is determined.

- This is used to determine - using TCO, Warehouse Costs and Driver Wages - the Cost per Delivery
- The following vehicles are compared;
- Diesel Vans (often the base case)
- Electric Vans
- Electric Cargo Bikes
- Single Delivery Autonomous Vehicles (SDAV)
- Multiple Delivery Autonomous Vehicles (MDAV)

Vehicles Compared: TCO Data I

Introduction Urban Population E-Commerce Contert

Autonomous Vehicles

Methodology
Modelling
Overview
Summary
Literature
Service Penalty
Market Segments
Math
Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

TCO per day as a function of Capacity Volume

Energy source of Van
\boxminus Diesel
追 Electric
\rightleftarrows Petrol

Vehicles Compared: TCO Data II

■ Analysis based on data of 50 Vans of differing energy source, capacity, manufacturer, etc.
■ Vans of different volume capacities used in different market segments. Parcels use van with capacity of 3.5 m 3 , Groceries and B2B of 8m3.
■ Purchase and Energy costs for Grocery Market Segments are 1.2 times that of B 2 B segment due to refrigeration.

- ASDVs cost $2 x$, and $A M D V$ s cost $3 x$ diesel vans. ${ }^{8}$

[^2]
Methodology: determining Number of Deliveries per day

Table: Variables used

Variable	Description	Unit
n	number of deliveries in a day	-
$t_{\text {lod }}$	length of day	hours
$t_{\text {loading }}$	time to load vehicle	hours
$t_{\text {delivery }}$	time per delivery	hours
$d_{\text {wfd }}$	distance of warehouse to first delivery	kilometers
$d_{b d}$	average distance between deliveries	kilometers
$s_{w f d}$	average speed between warehouse and delivery area	kilometers per hour
$s_{b d}$	average speed between deliveries	kilometers per hour
$d p s$	deliveries per stop	-
$d p s_{\text {coeff }}$	time coefficient if more than 1 deliveries per stop	-
$v_{\text {autonomy }}$	vehicle autonomy	kilometers
$v_{\text {volumecapacity }}$	vehicle volume capacity	cubic meters
$v_{\text {weightcapacity }}$	vehicle weight capacity	kilograms
$p_{\text {vol }}$	average parcel volume	cubic meters
$p_{w t}$	average parcel weight	kilograms

Methodology: Equations - Number of Deliveries per day I

Introduction
Urban Population E-Commerce Context

Autonomous Vehicles

Methodology
Modelling
Overview
Summary
Literature
Service Penalty
Market Segments Math

Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

To find number of deliveries per day, the following steps are implemented;

1 Solve for n subject to
1 Time constraint

$$
\begin{equation*}
\mathrm{n}_{1}=\left(\frac{\left(t_{\text {lod }}-\frac{2 * d_{\text {wfd }}}{s_{\text {wfd }}}+\frac{d_{b d}}{s_{b d}}-t_{\text {loading }}\right) * d p s}{\frac{d_{b d}}{s_{b d}}+\left(\left(1+(d p s-1) * d p s_{\text {coeff }}\right) * t p d\right)}\right) \tag{17}
\end{equation*}
$$

2 Autonomy Constraint

$$
\begin{equation*}
n_{2}=\left(v_{\text {autonomy }}-\frac{2 * d_{w f d}}{s_{w f d}}\right) * \frac{d_{b d}}{s_{b d}}+1 \tag{18}
\end{equation*}
$$

3 Volume Constraint

$$
\begin{equation*}
n_{3}=\frac{v_{\text {volumecapacity }}}{p_{\text {vol }}} \tag{19}
\end{equation*}
$$

Methodology: Equations - Number of Deliveries per day II

Introduction
Urban Population E-Commerce Context

Autonomous Vehicles

Methodology
Modelling
Overview
Summary
Literature
Service Penalty
Market Segments Math

2 Determine time of round with $n_{\text {round }}$

$$
\begin{equation*}
\mathrm{t}_{\text {round } 1}=2 * \frac{d_{w f d}}{s_{w f d}}+\left(\frac{n_{\text {round } 1}}{d p s}-1\right) * \frac{d_{b d}}{s_{b d}}+\left(\frac{n_{\text {round } 1}}{d p s}\right) *\left(1+(d p s-1) * d p s_{\text {coeff }}\right) * t_{\text {delivery }}+t_{\text {loading }} \tag{22}
\end{equation*}
$$

Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes
4 Weight Constraint

$$
\begin{equation*}
n_{4}=\frac{v_{\text {weightcapacity }}}{p_{w t}} \tag{20}
\end{equation*}
$$

5 Choose min from 17,18, 19, 20

$$
\begin{equation*}
n_{\text {round } 1}=\min \left(n_{1}, n_{2}, n_{3}, n_{4}\right) \tag{21}
\end{equation*}
$$

3 Determine no. of 'complete' rounds per day

$$
\begin{equation*}
r_{n}=\left\lfloor\frac{t_{\text {lod }}}{t_{\text {round } 1}}\right\rfloor \tag{23}
\end{equation*}
$$

Methodology: Equations - Number of Deliveries per day III

Introduction
Urban Population E-Commerce Context

Autonomous Vehicles

Methodology
Modelling
Overview
Summary
Literature
Service Perraty
Market Segments
Math
Results
Cost per Delivery
Winning
Combination
Conclusion
Appendixes

4 Determine time left

$$
\begin{equation*}
t_{\text {left }}=t_{\text {lod }}-r_{n} * t_{\text {round } 1} \tag{24}
\end{equation*}
$$

5 Determine number of other deliveries
1 Time constraint

$$
\begin{equation*}
\mathrm{n}_{5}=\left(\frac{\left(t_{\text {left }}-\frac{2 * d_{\text {wfd }}}{s_{\text {wfd }}}+\frac{d_{b d}}{s_{b d}}-t_{\text {loading }}\right) * d p s}{\frac{d_{b d}}{s_{b d}}+\left(\left(1+(d p s-1) * d p s_{\text {coeff }}\right) * t p d\right)}\right) \tag{25}
\end{equation*}
$$

2 Autonomy Constraint will be same as 18
3 Volume Constraint will be same as 19
4 Weight Constraint will be same as 20
5 Choose min from 25,18,19,20

$$
\begin{equation*}
n_{\text {other }}=\min \left(n_{5}, n_{2}, n_{3}, n_{4}\right) \tag{26}
\end{equation*}
$$

Methodology: Equations - Number of Deliveries per day IV

6 Thus, from 23, 21,26, total deliveries in a day are given as;

$$
\begin{equation*}
d_{\text {total }}=r_{n} * n_{\text {round } 1}+n_{\text {other }} \tag{27}
\end{equation*}
$$

- From $d_{\text {total }}, d_{\text {total }}^{\text {week }}$ is determined.
- This is applied across whole fleet to determine dfleet total week.
- This is used to determine cost/delivery.

The Driver/Deliverer

■ In conventional deliveries, the driver/deliverer accomplishes the last meters of the last mile and obtains a confirmation of delivery from the end customer.
■ He is paid an hourly wage of 11 euros/hour. He works 40 hours/week.
■ In deliveries using autonomous vehicles, the driver wage is zero.

Latent Knowledge I

Table: Latent Knowledge in Drivers

S.No	Skill/Knowledge	Application
1.	Personal relationships with various inhabitants	(ex. If customer is not avail- able, driver delivers to neigh- bour, based on previous agree- ments)
		-Accommodating non prepared return on other rounds (Espe- cially true for business deliv-
		eries, If a return form a cus- tomer is not prepared, s/he can
making the round more effi-		
cient)		

Latent Knowledge II

		-Concierge
2.	Knowledge of Parking spaces	- Reduction of time spent to look for a parking space
		- Knowledge of parking time restrictions
		Alternate parking spots
3.	Knowledge of traffic conditions and trends	Ex. Higher traffic in a specific repeated delivery address at a particular time (commercial center)
		-Reordering delivery order to achieve faster overall delivery

Latent Knowledge III

Introduction
Urban Population E-Commerce Context

Methodology
Modelling
Overview
Summary
Literature
Service Penalty
Market Segments
Math
Results
Cost per Delivery
Winning
Combination

4.	Knowledge of geographical quirks	Ex. Access codes, GPS Map Failures: Dead Ends
	- Driver saves a lot of time by already knowing the access code, or the requirement of it.	
	-Driver aware of GPS failures in certain specific scenarios, ex. Dead ends, and avoids them.	

Latent Knowledge IV

An experienced driver can be 40% more effective during his/her rounds. "the difference between two of our drivers (D22 and D24) with similar round sizes and parcel volumes shows a considerable variation in effective- ness, with D22 driving 44% less distance, spending 35% less time per parcel, 29% less driving time per parcel, and 39% less parking time per parcel. The variation in effectiveness of our drivers relates to better route planning, exploitation of accumulated knowledge of the round, personal relation- ships with other stakeholders, the amount of time spent at the curbside and the influence of walking. These statistics show that more effective drivers achieve higher rate of delivery of parcels per minute while spending less time driving and parking in the van".(Bates et al., 2018)

[^0]: ${ }^{5}$ Business to Business
 ${ }^{6}$ iff $A V$ s used

[^1]: ${ }^{7}$ These values are known through field visits.

[^2]: ${ }^{8}$ arbitrary choice, will soon change it to $2 x, 3 x$ of Electric Vans.

