TRUCK ROUTING OPTIMIZATION
FOR LARGE-SCALE
TRANSPORTATION NETWORKS

TANER COKYASAR, JEFFREY LARSON, MONIQUE STINSON, OLCAY SAHIN, OMER VERBAS,
VINCENT FREYERMUTH, HYUN SEOP UHM

ARGONNE NATIONAL LABORATORY
Research Background

S.M.A.R.T. Mobility

- Systems and Modeling for Accelerated Research in Transportation Mobility Laboratory Consortium
 - Connected and Automated Vehicles
 - Mobility Decision Science
 - Multi-Modal Freight
 - Urban Science
 - ...

POLARIS Tool

- High-performance, open-source agent-based modeling framework
 - Simulates large-scale transportation systems
 - Estimates impacts on mobility at the regional level
Research Goal

- **Previous Works**
 - E-commerce delivery modeling in SMART 1.0 (~ 2020)
 - **Demand model**: estimate household e-commerce demand
 - **Supply model**: make routes which deliver goods from companies to households

 Labor-intensive
 Requiring up to 1-2 weeks to estimate all delivery routes

- **Goal of This Study**
 - Develop and implement an automated e-commerce supply model
 - Applying vehicle routing problem (VRP)
 - Integrated with POL#RIS simulation tool
 - More efficient to compute, by eliminating the manually intensive procedures in SMART 1.0
 - Available to evaluate the impacts of e-commerce delivery on the regional traffic network
Target System

- **Metropolitan Areas**
 - Importing *traffic network, household characteristics, and companies’ information* from POL*RIS*

 - *Detailed road networks* are applied to compute realistic travel time between locations
 - *E-commerce delivery demand* is generated using NHTS (2017) dataset and related research (Spadafora and Rodriguez, 2021)
 - *4 major providers* are considered; Amazon, FedEx, UPS, and USPS
Target System

- Target Areas:

<table>
<thead>
<tr>
<th>Area</th>
<th># of households</th>
<th># of households ordering</th>
<th># of arcs</th>
<th># of vertices</th>
<th># of depots</th>
<th># of providers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austin</td>
<td>830,000</td>
<td>158,172</td>
<td>40,891</td>
<td>17,231</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>Bloomington</td>
<td>16,605</td>
<td>2,816</td>
<td>7,013</td>
<td>2,540</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Chicago</td>
<td>4,017,583</td>
<td>606,669</td>
<td>57,267</td>
<td>19,377</td>
<td>53</td>
<td>4</td>
</tr>
<tr>
<td>Detroit</td>
<td>1,910,260</td>
<td>271,129</td>
<td>60,701</td>
<td>26,424</td>
<td>30</td>
<td>4</td>
</tr>
</tbody>
</table>
Algorithm Background

- **Vehicle Routing Problem**
 - **Making routes**: each route departs from its depot, visits several customer locations, and returns to the depot
 - **Minimize total travel time**: find the best visiting order of customer locations to reduce the travel time (or dist.)
 - **Well-known optimization problem**: a lot of optimization methods and heuristic approaches are suggested

- **VRP algorithms cannot be applied directly**
 - Optimal solutions are reported within 100 customer locations
 - Heuristic algorithms are applicable on the network with thousands of customers.
 - It may be over the memory size to contain 600,000 x 600,000 travel time matrix
Algorithm Summary

- **Sequential VRP Algorithm**
 1. **Depot-level partitioning**: assigning zones to each depot (minimum zone-to-zone travel time)
 2. **Simplification procedure**: converting customer locations to super-locations (link-based)
 3. **Single-depot VRP model**: solving VRP for every depot and associated super-locations
Algorithm (1) Depot-Level Partitioning

- **Zonal Network**
 - POL:bRIS has traffic analysis zones (TAZs) for traffic planning model
 - Consider customer locations in a same zone as one large demand
 - Every zone is assigned to a single depot to minimize the total zonal travel time
Algorithm (1) Depot-Level Partitioning

- **Math Model: Assignment Problem**
 - Commercial optimization solver (GUROBI) is used to find the optimal solution

<table>
<thead>
<tr>
<th>Set</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{D}_s</td>
<td>subset of depots operated by the service provider $s \in \mathcal{S}$.</td>
</tr>
<tr>
<td>\mathcal{G}_s</td>
<td>subset of customers served by the service provider $s \in \mathcal{S}$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Param.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{d_i}^j$</td>
<td>zonal travel time from Z_d (the zone of depot $d \in \mathcal{D}_s$) to Z_i (the zone of customer $i \in \mathcal{G}_s$) of provider $s \in \mathcal{S}$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Var.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{di}</td>
<td>(\begin{cases} 1, & \text{if customer } i \in \mathcal{G}_s \text{ is assigned to depot } d \in \mathcal{D}_s, \ 0, & \text{otherwise.} \end{cases})</td>
</tr>
</tbody>
</table>

- **Formulation**
 - \[
 \min_{x} \mathbf{T}^d = \sum_{d \in \mathcal{D}_s, i \in \mathcal{G}_s} T_{d_i}^{s} x_{di}, \]
 - (1) Minimizes the total zonal travel time between depots and customer zones
 - subject to,
 - \[
 \sum_{d \in \mathcal{D}_s} x_{di} = 1, \quad \forall i \in \mathcal{G}_s, \]
 - (2) Each zone is assigned to a single depot
 - \[
 \sum_{i \in \mathcal{G}_s} x_{di} \geq \left\lfloor \frac{|\mathcal{G}_s|}{|\mathcal{D}_s|} \right\rfloor, \quad \forall d \in \mathcal{D}_s; \]
 - (3) # Customers assigned to a certain depot must be bigger than the lower-bound (decisions for depot operation expenses)
Algorithm (2) Simplification Procedure

- Simplification of Customer Locations
 - Each depot still has lots of customer locations → Customers on a link is simplified into a super location
 - Super-location: mid point of every link on road network
Algorithm (2) Simplification Procedure

- Details
 1. Labeling every customer location to the closest super-location
 2. Solve traveling salesman problem (TSP) to compute the total service time in every super-location

- Unit speed between locations: 15mph
- TSP minimizes the total travel time to deliver all locations using Manhattan distance
- Dwell time on every location (for parcel delivery): 2mins

Customer locations: 7
Total service time: 54 mins
Algorithm (3) Single-Depot VRP

- Delivery Planning using Results of (1) and (2)
 - Algorithm (1) gives the associated customer locations for every depot
 - Algorithm (2) reduces the number of locations & computes service time of each super-location
 - Finally, VRP finds the best routes
 - to minimize the total operation time (= link-to-link travel time from POLARIS + service time)
 - under operational constraints of each vehicle:
 1. visiting customer locations <= 120
 2. operation time <= 10 hours
 3. travel distance <= 100 miles
Algorithm (3) Single-Depot VRP

- **Math Model: Single-depot Vehicle Routing Problem**
 - Commercial optimization solver with computation time limitation (2 hours)

\[
\begin{align*}
\min_{x^d} & \quad T^d = \sum_{l \in \mathcal{L}^d} T^d_{l, l', d} x^d_{l, l'}, \\
\text{subject to}, & \quad \sum_{l \in \mathcal{L}^d_{l',d}} x^d_{l, l'} = 1 \quad \forall l' \in \mathcal{L}^d_{l',d} \setminus \{0_d\}, \\
& \quad \sum_{l' \in \mathcal{L}^d_{l',d} \setminus \{0_d\}} x^d_{l, l'} = 1 \quad \forall l \in \mathcal{L}^d_{l,d} \setminus \{0_d\}, \\
& \quad \sum_{l \in \mathcal{L}^d_{l,d} \setminus \{0_d\}} \delta_{0_d,l} = K_d, \\
& \quad \sum_{l \in \mathcal{L}^d_{l,d} \setminus \{0_d\}} \delta_{0_d,l'} = K_d, \\
& \quad \sum_{l \in \mathcal{L}^d_{l,d} \setminus \{0_d\}} \left(z_{l,l'} - z_{l,l'} + T^d_{l,l'} - T^d_{l,l'} \right) = 0 \quad \forall l \in \mathcal{L}^d_{l,d} \setminus \{0_d\}, \\
& \quad z_{l,l'} \leq \left(T^d_{l,l'} - T^d_{l,l'} \right) \delta_{l,l'} \quad \forall l \in \mathcal{L}^d_{l,d}, l' \in \mathcal{L}^d_{l,d} \setminus \{0_d\}, \\
& \quad z_{l,l'} \geq \left(T^d_{l,l'} + T^d_{l,l'} + T^d_{l,l'} \right) \delta_{l,l'} \quad \forall l \in \mathcal{L}^d_{l,d} \setminus \{0_d\}, l' \in \mathcal{L}^d_{l,d}, \\
& \quad z_{0_d,l} \leq \bar{T}_{l,d,0_d} \quad \forall l \in \mathcal{L}^d_{l,d} \setminus \{0_d\}, \\
& \quad z_{0_d,l} = T^d_{l,0_d} \delta_{0_d,l} \quad \forall l \in \mathcal{L}^d_{l,d} \setminus \{0_d\}, \\
& \quad y_{l,l'} = Q_s x^d_{l, l'} \quad \forall l, l' \in \mathcal{L}^d_{l,d}, \\
& \quad \sum_{l \in \mathcal{L}^d_{l,d} \setminus \{0_d\}} y_{l,l'} \leq \sum_{l \in \mathcal{L}^d_{l,d} \setminus \{0_d\}} y_{l,l'} - D_t = 0 \quad \forall l \in \mathcal{L}^d_{l,d} \setminus \{0_d\}, \\
x^d_{l,l'} \in \{0, 1\}, y_{l,l'}, z_{l,l'} \in \mathbb{R}_{\geq 0} \quad \forall l, l' \in \mathcal{L}^d_{l,d}.
\end{align*}
\]

Set

\[\mathcal{D}_d\] a subset of customer locations to be served by a given depot \(d \in \mathcal{D}_s\) of service provider \(s \in \mathcal{S}\).

\[\mathcal{L}^d\] a set of locations called super-locations located in the middle of arcs. Note that two arcs in the opposite directions (sharing the same vertices) are represented by a single super-location.

\[\mathcal{L}^a_{l,d}\] a subset of locations including the depot \(\{0_d\}\) and \(g^d\).

\[\mathcal{L}^a_{l,d}\] a subset of super-locations that belong to the depot-level subproblems of depot \(d \in \mathcal{D}_s\).

Param. Definition

- \(D_t\): number of packages to be delivered at the super-location \(l\).
- \(K_d\): number of vehicles at depot \(d\).
- \(Q_s\): vehicle capacity of service provider \(s\).
- \(\bar{T}_d\): maximum allowed travel time for each vehicle of \(s\).
- \(T^d_{l,l'}\): travel time from super-location \(l\) to super-location \(l'\).
- \(T^d_{l,0_d}\): delivery time (i.e., package dropping time) at the super-location \(l\).

Var. Definition

- \(x^d_{l,l'}\): \(\begin{cases} 1, & \text{if a vehicle drives from super-location } l \in \mathcal{L}^a_{l,d} \text{ to super-location } l' \in \mathcal{L}^a_{l,d}, l \neq l', \\ 0, & \text{otherwise.} \end{cases} \)
- \(y_{l,l'}\): number of packages delivered at super-location \(l \in \mathcal{L}^a_{l,d}\) while en-route to \(l' \in \mathcal{L}^a_{l,d}\), i.e., after leaving \(l\), where \(l \neq l'\).
- \(z_{l,l'}\): total travel time from the depot to super-location \(l' \in \mathcal{L}^a_{l,d}, l \in \mathcal{L}^a_{l,d}\) is the predecessor of \(l'\) and \(l \neq l'\).
Test Results

- **# Customer locations allocated to a depot**

<table>
<thead>
<tr>
<th>Area</th>
<th>Avg.</th>
<th>Min.</th>
<th>Max.</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austin</td>
<td>7,190</td>
<td>242</td>
<td>24,000</td>
<td>5,950</td>
</tr>
<tr>
<td>Bloomington</td>
<td>352</td>
<td>167</td>
<td>480</td>
<td>116</td>
</tr>
<tr>
<td>Chicago</td>
<td>11,447</td>
<td>905</td>
<td>25,200</td>
<td>7,466</td>
</tr>
<tr>
<td>Detroit</td>
<td>9,037</td>
<td>2,138</td>
<td>14,400</td>
<td>2,144</td>
</tr>
</tbody>
</table>

- **# Super-locations allocated to a depot**

<table>
<thead>
<tr>
<th>Area</th>
<th>Avg.</th>
<th>Min.</th>
<th>Max.</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austin</td>
<td>975</td>
<td>25</td>
<td>2,663</td>
<td>712</td>
</tr>
<tr>
<td>Bloomington</td>
<td>191</td>
<td>83</td>
<td>269</td>
<td>68</td>
</tr>
<tr>
<td>Chicago</td>
<td>1,346</td>
<td>93</td>
<td>3,707</td>
<td>872</td>
</tr>
<tr>
<td>Detroit</td>
<td>1,733</td>
<td>332</td>
<td>4,290</td>
<td>835</td>
</tr>
</tbody>
</table>
Test Results

- **Computational requirements for VRPs**
 - **Acceptable**: optimal solution cannot be better than current solution more than 10%
 - Suggested algorithm could find acceptable solutions within few minutes in almost every case

<table>
<thead>
<tr>
<th>Area</th>
<th>Scenario</th>
<th># inst.</th>
<th>Optimal</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td># MIP inst.</td>
<td>MIP time (s)</td>
<td>MIP gap (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>62</td>
<td>17</td>
<td>6.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>62</td>
<td>20</td>
<td>6.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>62</td>
<td>19</td>
<td>7.52</td>
</tr>
<tr>
<td>Austin</td>
<td>V = 25</td>
<td>66</td>
<td>55</td>
<td>6.6</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V = 50</td>
<td>60</td>
<td>1</td>
<td>23.87</td>
<td>5.51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V = 100</td>
<td>60</td>
<td>0</td>
<td>N/A</td>
<td>10.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>186</td>
<td>56</td>
<td>6.91</td>
<td>7.83</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>Scenario</th>
<th># inst.</th>
<th>Optimal</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td># MIP inst.</td>
<td>MIP time (s)</td>
<td>MIP gap (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>158</td>
<td>63</td>
<td>12.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>158</td>
<td>66</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>158</td>
<td>68</td>
<td>12.4</td>
</tr>
<tr>
<td>Chicago</td>
<td>V = 25</td>
<td>159</td>
<td>62</td>
<td>10.3</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V = 50</td>
<td>159</td>
<td>46</td>
<td>17.2</td>
<td>6.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V = 100</td>
<td>156</td>
<td>0</td>
<td>N/A</td>
<td>9.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>474</td>
<td>197</td>
<td>11.9</td>
<td>7.95</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>Scenario</th>
<th># inst.</th>
<th>Optimal</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td># MIP inst.</td>
<td>MIP time (s)</td>
<td>MIP gap (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>90</td>
<td>30</td>
<td>8.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>90</td>
<td>34</td>
<td>9.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>90</td>
<td>26</td>
<td>4.84</td>
</tr>
<tr>
<td>Bloomington</td>
<td>V = 25</td>
<td>90</td>
<td>84</td>
<td>5.4</td>
<td>3.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V = 50</td>
<td>90</td>
<td>6</td>
<td>39.9</td>
<td>6.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V = 100</td>
<td>90</td>
<td>0</td>
<td>N/A</td>
<td>12.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>270</td>
<td>90</td>
<td>7.7</td>
<td>9.02</td>
<td></td>
</tr>
</tbody>
</table>

Note: N/A = not applicable
Test Results

- Sensitivity Analysis
 - What if vehicle capacity increases?

- VMT: Vehicle Miles Traveled
- VHT: Vehicle Hours Traveled
Conclusions

- **Computational Efficiency of Suggested Algorithm**
 - Sequential approach is useful to find acceptable solutions within short time (Total run time incl. data preparation < 3 hours on Chicago network)
 - Characteristics of traffic network (TAZs, link-based simplification, zonal travel time, link travel time …) are captured to enhance the model details

- **Optimization Problem embedded in POLARIS**
 - VRP + detailed regional traffic network enables realistic decision support
 - Various simulation studies can predict the impact on the decision-making
 - Current study: impact analysis when trucks are electrified
References

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy, Vehicle Technologies Office, under the Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Laboratory Consortium, an initiative of the Energy Efficient Mobility Systems Program.

Questions?

For more information, please see