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Preliminaries
Mobility-on-demand (MOD) services without shared rides

◦ E.g. UberX, Conventional Lyft, Taxis
◦ Automated MOD à AMOD

Shared-ride MOD services
◦ E.g. Uber Pool, Lyft Line, Via, Chariot, Bridj
◦ Microtransit, Demand-responsive transit, Dial-a-ride Problem

Network Paths vs. Vehicle Routes
◦ Network Paths: the sequence of nodes/links a vehicle traverses in a road network
◦ Routes: the ordered sequence of user pick and drop locations for a vehicle



Motivation
So many great benefits of shared-ride MOD services!

◦ Individuals: Reduced travel costs 
◦ Splitting operational – fuel and labor (~$0 for AVs) – costs
◦ Capture capital/depreciation cost reduction from…

◦ Mobility Service Providers (MSPs): Reduced ‘fleet’ size and operational costs
◦ Society: Reduce vehicle miles travelled (VMT), traffic congestion, fuel consumption, harmful emissions

Yet…



MotivationBut what about Uber Pool and Lyft Line?

Around 20% of TNC trips



Motivation
Challenges/Problems

1.Travelers have an aversion to sharing rides

2.Operating shared-ride vehicle fleets is challenging
◦ Trade-offs between sharing opportunities, detours, and price
◦ Uncertainties/Stochasticity everywhere

◦ New traveler requests
◦ Link travel times
◦ Pickup times (and to a lesser extent) drop-off times

3.What policy interventions would be helpful?
◦ Considering equilibrium at mode choice and route choice levels



Research Scope
This research study:

◦ Conceptualizes bi-criteria path-finding for shared MOD vehicles
◦ Develops a modeling framework for the static and dynamic bi-criteria best-path problems for shared-

ride vehicles
◦ Proposes a solution algorithm (i.e., operational policy) for bi-criteria path assignment

◦ In addition to algorithms/policies for matching vehicles and requests, and sequencing user pickups and drop-offs

◦ Tests and validates the solution algorithm/policies and models, using the Anaheim, CA network



Background
The operational process for shared-
ride MOD services usually includes 
two/three interconnected parts:
1. Matching passengers with service 

vehicles
2. Routing/Sequencing vehicles to pick-

up/drop-off customers
3. Repositioning empty vehicles

Pathfinding largely overlooked – “just 
assign vehicles to shortest network 
paths”
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Research Hypothesis
Assigning vehicles to shortest paths between pickup and drop-off locations may result in 
suboptimal fleet performance

◦ Vehicles may incur avoidable mileage when responding to new requests, since pathfinding process does 
NOT consider future demand



Key Idea: Bi-criteria Pathfinding



Key Idea: Bi-criteria Pathfinding



Goals and Research Questions
This research project aims to develop an efficient operational policy for shared-ride MOD 
services that efficiently:

1. Matches new requests to vehicles
2. Sequences traveler pickups and drop-offs for individual vehicles
3. Repositions empty vehicles
4. Assigns vehicles to paths through a network, considering both travel time and potential future 

demand

To answer the following questions
◦ Does bi-criteria pathfinding improve the operational efficiency of shared-ride MOD services?
◦ If yes, when should shared-ride MOD vehicles be assigned to bi-criteria paths?
◦ What are the major exogenous and endogenous factors that impact the effectiveness of bi-criteria 

pathfinding?



Methodology: Architecture Overview



Methodology: Step 2 – Cost Measure
For each feasible passenger-vehicle pair, this study defines the cost (𝑐#$) as the travel time/distance 
differential between the vehicle route without the new request and the vehicle route with the new 
request

The cost of matching (𝑐!") for the vehicle and Passenger 2 in 
the picture is the difference between the travel distance/time 
of the orange route and the green route. 



Methodology: Step 3 -- Matching
Passenger-vehicle assignment problem (bi-partite matching)
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In the above formulation:
𝑥!": Binary decision variable, equal to 1 if traveler 𝑝 is served by vehicle 𝑣
𝑟!: Reward for serving traveler 𝑝
𝑐!": Cost of serving traveler 𝑝 with vehicle 𝑣
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Methodology: Step 5 -- Path Assignment
Routing a vehicle (formulated as a multi-criteria shortest path problem)
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𝑥)( ∈ 0,1 (8)
In the above formulation:
𝑥)(: Binary decision variable, equal to one if link 𝑖, 𝑗 traversed by vehicle
𝑟)(: Potential reward for travelling on a link (𝑖, 𝑗)
𝑐)(: Cost of traversing link (𝑖, 𝑗)



Methodology: Step 5 -- Path Assignment
Combine the two objective functions (5) and (6)
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• 𝑤+ = 𝑓 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦, 𝑡𝑖𝑚𝑒 𝑠𝑙𝑎𝑐𝑘 • Reward term, 𝑟)(
• Related to potential link demand

• We test bi-criteria routing under three conditions
1. The vehicle has only one drop off task remaining
2. The vehicle has two drop-off tasks and no pickup tasks remaining
3. The vehicle has two drop-off tasks and no pickup tasks remaining OR the vehicle is empty and en-route to a pickup task



Methodology: Link reward calculation 
(Potential Demand on Links)
1. Construct a ‘Detour ellipse’ 

◦ Vehicle’s current location (316) and Destination (406) as focal points 
◦ ‘Distance + Max Detour’ as major axis length

2. For each Origin node in the Detour ellipse region:
◦ Find Destination nodes within the region.

◦ Store Origin to Destination demand

◦ Find Destination nodes outside of the region, where the shortest 
path from the Origin to the Destination passes through the current 
vehicle Destination (406).
◦ Store Origin to Destination demand

◦ Assign Origin to Destination demand to Origin outbound link on 
Shortest Path from the Origin node to the Destination (406) node
◦ The summation of all this demand is the Link Reward 𝑟!"





Case Study



Case Study
Inputs:

◦ Anaheim Network 
◦ 401 nodes (223 nodes with demand) and 854 links

◦ Fleet size: 20, 50, 100, 200
◦ Number of Requests: [100 to 2,100]
◦ Reward coefficient 𝑤) : 0.01, 0.1, 0.5, 1
◦ Bi-criteria Conditions

1. The vehicle has only one drop off task remaining
2. The vehicle has two drop-off tasks and no pickup tasks remaining
3. The vehicle has two drop-off tasks and no pickup tasks remaining OR the 

vehicle is empty and en-route to a pickup task

Outputs:
◦ Shortest path vs. Bi-criteria pathfinding, difference in:

◦ Customer waiting time 
◦ In-vehicle travel time
◦ Combination of customer waiting time and in-vehicle travel time



Results



Base Case:
Condition 1, Fleet Size 100, Reward Coeff = 0.1

Bi-criteria pathfinding is 
reasonably effective when # 
Requests is between 300 and 
1000

◦ This represents moderate 
oversupply to moderate 
undersupply

Bi-criteria pathfinding is 
ineffective in extreme 
undersupply and oversupply 
cases



Impact of Reward Coefficient: 𝑤!
High variance in the results

◦ Indicates an area of future research

◦ Need to be selective when using bi-criteria 
pathfinding

Using reward coefficient of 0.1 
outperforms others

◦ It works especially well when request are 
between 300 to 1000.

Giving large weights to reward terms 
does not make bi-criteria path more 
effective.



Testing Conditions for Bi-criteria Paths
• Condition 1 outperforms 2 and 3

• Simple policy is better than 
complex ones

• Need to be selective about 
employing bi-criteria pathfinding

1. If a vehicle has only one drop 
off task assigned.

2. If a vehicle has two or less 
drop off tasks assigned.

3. Condition 2 & if a vehicle is 
empty and en-route to a 
pickup task



Conclusions



Conclusions
Bi-criteria path usage is effective for reducing both customer waiting time and in-vehicle travel time

◦ The reduction of total time for passengers with with bi-criteria path is 3-5%

Bi-criteria pathfinding works best in cases where the supply of vehicles and request demand are 
relatively balanced

Link reward weights impact performance
◦ This study uses a fixed weight across all system states; future research should make the weight a function of 

system state

Condition 1 outperforms Condition 2 and 3
◦ Only consider bi-criteria paths when vehicle is empty or has one remaining drop-off



Future Enhancements
Improve link reward estimation method to better estimate potential demand

Improve pickup/drop-off resequencing when the vehicle is on a bicriterion path

Incorporate remaining travel time buffer of in-vehicle passengers and current vehicle occupancy 
during bi-criteria path choice

Account for spatial and temporal availability of VEHICLES (in addition to demand) when 
assigning vehicles to paths

Optimal dispersion of vehicles through multiple bi-criterion paths, instead of assigning all 
vehicles on the same path

Make reward term in objective function, conditional on state of system
◦ Supply-demand imbalance, vehicle occupancy, etc. 
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Benefits of Bi-criteria pathfinding
Passengers/Users:

◦ Reduce user wait time
◦ More affordable

Service Providers:
◦ Reduce operational costs
◦ Reduce necessary fleet size
◦ Potentially increase ridership

Society:
◦ Decrease VMT, congestion reduction, energy consumption, and emissions
◦ Increase mobility and accessibility, particularly for car-less households

Public Sector:
◦ Better utilization of roads
◦ Potential reduction of infrastructure maintenance cost


