Emissions Analysis of the Port Drayage Truck Replacement Program and Local Air Quality: The case of the Port of New York and New Jersey

Gina Yeonkyeong Park

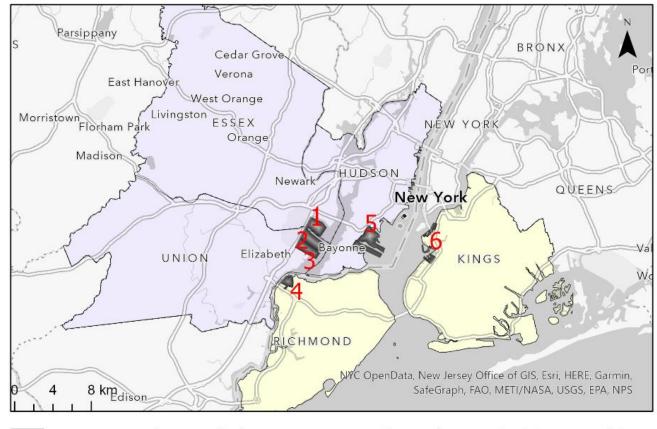
PhD Student, Regional Science Department of City and Regional Planning, Cornell University

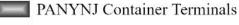
Research Design

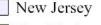
- RQ: How worthy Truck Replacement Program is?
- Method: Emissions calculation
- Result: Local air quality impact assessment
- Policy implication: Cost-Benefit analysis

Background

- Ports and Air Pollution:
- Ports transport 80% global trade volume, Emitting 10 -15 % SOx and NOx
- Global Supply Chain & Int'l Trade ↑

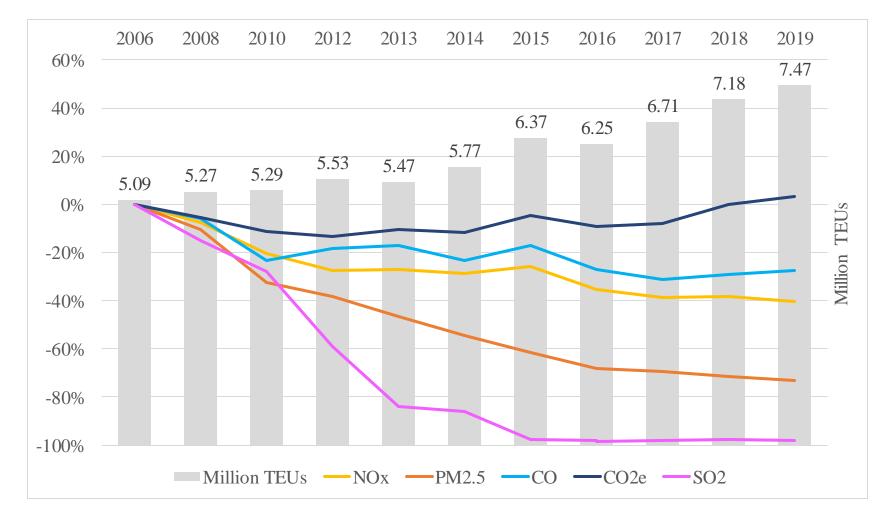

Why important? -> Reduces "Local" Air Pollution


Diesel engines
->NOx, PM_{2.5} ↑



->Chronic Respiratory Diseases & Mortality Hazards 1

Study Area - Port of New York and New Jersey (PANYNJ)



New York

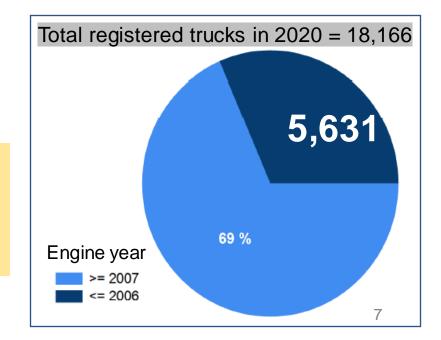
- Port Newark Container Terminal (Port Newark)
 Elizabeth Maher Terminal (Elizabeth Port Authority)
 APM Terminal (Elizabeth Port Authority)
- 4. Global Container Terminal (Howland Hook Marine Terminal)
- 5. Global Terminal Bayonne (Port Jersey)
- 6. Red Hook Container Terminal (Port Newark)

Emissions vs. Throughput

Source: Modified by author based on (Starcrest Consulting Group, LLC 2017, 2020) Note: Year 2007 and 2009 are missing from the dataset.

What is Port Truck Replacement Program?

Voluntary subsidy program to replace **old** (<=2006 engine) port drayage diesel trucks


Phase	Period of time	Unit of Trucks	DERA Grant
1 st	2010 – 2013 (4 years)	429	\$8.57 million
2 nd	2015 ~ 2020* (6 years)	418	\$8.84 million

Source: Number of replaced trucks (Liou 2020), amount of grant (Leavitt 2010; US EPA 2019) Note (*): The 2nd phase is ongoing, the record represents as of December 17th, 2020.

Total # of replaced trucks: 847

(as of December 2020)

Truck Emissions are 2nd only to Ships

Port of New York and New Jersey annual emissions in 2019

2019 (in	n tons/year)	NOx	PM _{2.5}	СО	SO ₂	CO ₂
	Ocean-Going Vessels	2,439 (46%)	48 (27%)	244 (19%)	82.4 (95%)	176,046 (25%)
	Harbor Craft	345 (6%)	12 (7%)	104 (8%)	0.2 (0.2%)	24,946 (4%)
Car	rgo Handling Equipment	483 (9%)	32 (18%)	381 (30%)	1 (1%)	132,966 (19%)
	Locomotives	321 (6%)	11 (6%)	70 (6%)	0.3 (0.3%)	26,335 (4%)
R	eavy-Duty Diesel Trucks	1,723 (32%)	77 (43%)	469 (37%)	2.9 (3%)	348,776 (49%)
Total		5,311	180	1,268	86.8	709,069

Data

- Port Emission Inventory 2019
- Port Truck Pass Reports PANYNJ 03.2020 11.2020

Method: EPA MOVES Emission Estimation Framework

Emissions = Emission Factors * Activity

Idling Emissions
$$\left(\frac{tons}{year}\right) =$$

 $\frac{\# of trucks \times total \, idling \, time \, (\,hrs/yr) \ \times \ emission \, factor \, (g/miles)}{453.59 \, g/lb \ \times \ 2000 \, lb/ton}$

Result: TRP annually reduces NOx (12.8% \downarrow), PM_{2.5} (1.6% \downarrow)

Total PANYNJ Terminal Emissions Ratio (tons/year)

Activity Component	NO _x	\mathbf{PM}_{10}	PM _{2.5}	VOC	СО	SO ₂	$\mathbf{CO}_2\mathbf{e}$
On-Terminal Driving	80	5	5	6	27	0.16	18,204
On-Terminal Idling	<mark>16</mark> 1 (9	.3%) 12	<u>1 1(14</u>	1.3%) <mark>2</mark> 3	56	0.19	22,925 (6.6%)
On-Road Driving	1,482	67	61	81	386	2.57	307,647
Totals	1,723	84	77	110	469	2.92	348,776

	Total on-terminal idling emission by replaced trucks (tpy)	Total HDDV emissions from the TRP (69 units)	Total HDDV emissions from the TRP (847 units)	Total HDDV emissions from the rest of the old trucks (5631 units)	Potential reduction impact on the Total Port Emissions
NOx	0.11	1.21	14.8	98.5 tons	12.8 %
PM _{2.5}	0.01	0.06	0.8	5.2 tons	1.6 %

Translating emissions to the local air quality impact: C-PORT Model (Community Model for Near-PORT Applications)

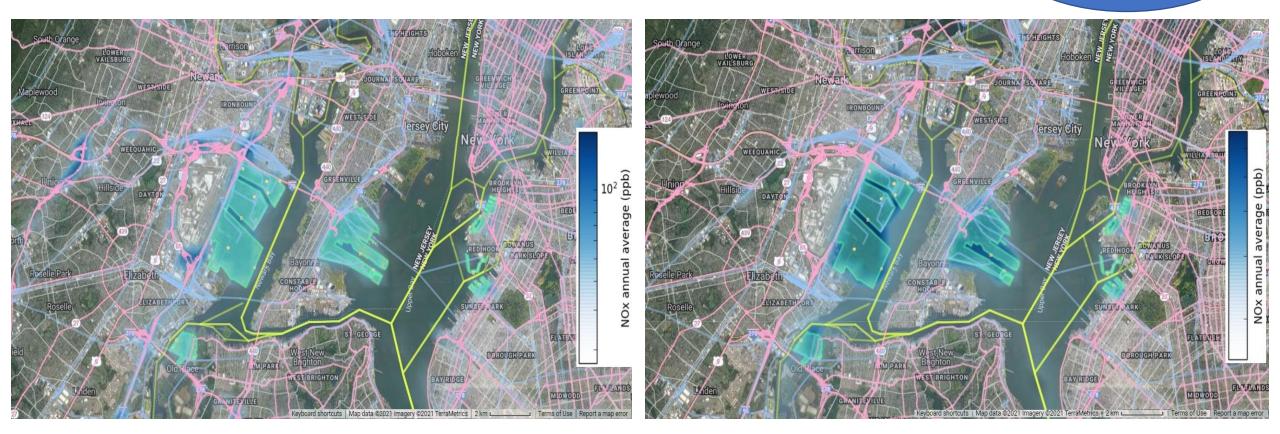
. Emission Sources

 (Area – Port Terminals, Point – Large Industrial Sources on Terminals, Line – Railroad, Roads, Ships in transit)

2. <u>Atmospheric Conditions</u>

(Weather, Wind, Season, etc. – annual average value taken from the nearest Met station ▼)

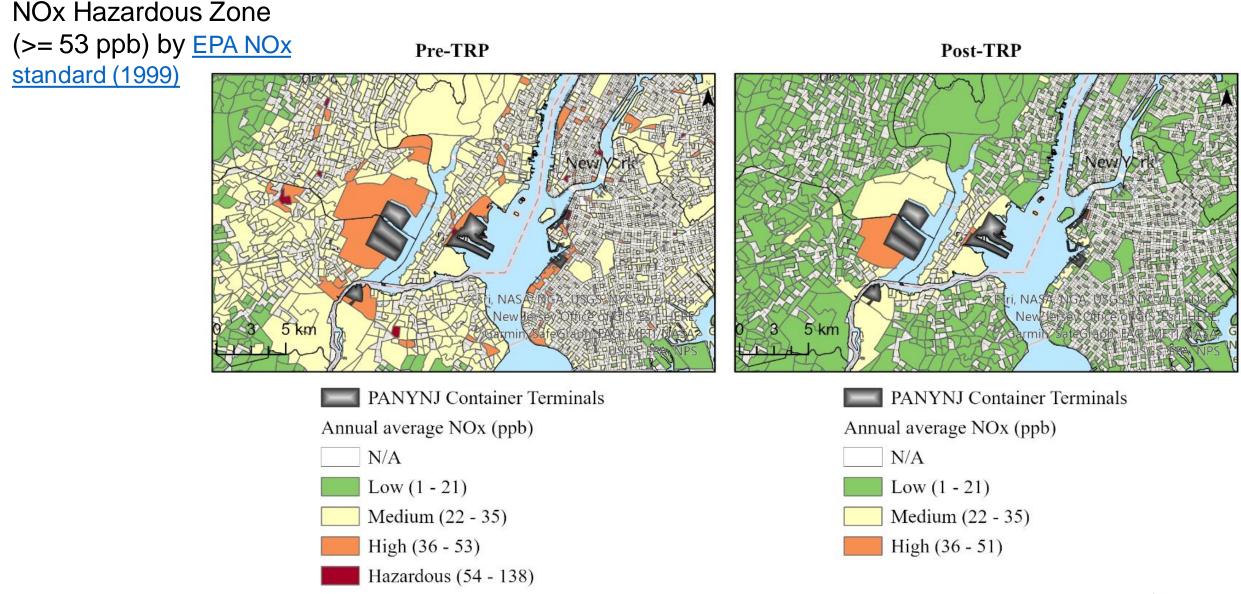
3. <u>Background Pollutant</u> <u>Concentration</u> included at NOx 15.9 ppb taken from the nearest monitoring station


Modifying Port Terminal Baseline NO_x (\times 0.872) PM_{2.5} (\times 0.984)

Reduction Impact: 12.8 %, 1.6% \downarrow

()	View and modify area sources Pre-TRP	1	View and modify area sources				st-	TF	R	* /2-543*	<u>* / 05 919</u> * /	9 Parent (18349)	2 / M	ANN 11/A T-T A	0
	All emissions values given in tons/year.		All emissions values given in tons/year.												
	Select all sources Add new source - Card new sources -		Select all sources Add new source - Coa	ad new sourc	ces 🗸 😧										
-	Facility Type NO _x CO SO ₂		Facility	Туре	NO _x	CO	SO ₂ F	PM _{2.5}	EC _{2.5}	OC _{2.5} P	M ₁₀ Ber	z Form	Acetalo	Acro	
D	Port of NY/NJ - Elizabeth Port Authority Marine Terminal Terminal 1078. 220.6 15.84	Õ	Port of NY/NJ - CSX - North & South Kearny	Railyard	0	0	0	0	0	0	0	0	0 0	0	1 😑
Ĵ	Port of NY/NJ - Global Marine Terminal Terminal 1,120.3839 229.2388 16.4583	0	Port of NY/NJ - Elizabeth Port Authority Marine Terminal	Terminal 94	40.3300	20.6404 1	5.8409 33	3.3445 2	26.1346	5.9659	0 0.4	878 7.1591	÷-4 C	0.0687	1 🗢
V	Port of NY/NJ - Howland Hook Marine Terminal Terminal 239.0903 48.9196 3.5122	ī	Port of NY/NJ - Global Marine Terminal	Terminal 97	76.9748	29.2388 1	6.4583 34	1.6439 2	27.1530	6.1984	0 0.5	068 7.4381	÷-4 C	0.0713	1 😑
щ	Port of NY/NJ - NS - E-rail Intermodal Terminal Railyard 0 0 0	L'III	Port of NY/NJ - Howland Hook Marine Terminal	Terminal 20	08.4867	48.9196	3.5122	7.3930	5.7945	1.3227	0 0.1	082 1.5873	÷-4 0	0.0152	1
	Port of NY/NJ - Port Newark Terminal 919.0477 188.0439 13.5007	щ	Port of NY/NJ - Manhattan Cruise Terminal	Terminal	15.8931	3.7292	0.2677 ().5636	0.4417	0.1008	0 8.245	le-3 1.2100	÷-5 C	1.1603e-3	1 🗢
	<< < 1 2 3 > >>		<< < 1 2 3 > >>												
A	2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A	Kenilworth	U.S.					~			RED		US ISLOPE	CEOWNHEIG
à	ELIZAD EMI POLIT	2	Id Cranford Reselle Park	zabrah	Y		CON	TADU		A.	X		S/A	K . Y	1
\odot		VAXO 4	Garwood Roselle	AIZABEUT	ORT	1	A.	The	3	~	Uppel	SUNISE	ARK	NE	
		\odot				Z		T	ा जा.	GEORGE		A	MX.	FLAT	LUED
			Winfield			d	MENE	Ast New Brighton		J.	\backslash / \rangle		BOROUGHP	ARK	A
	MARINERS HARSOR		Clerk		Inclace		677	STBRIGH	TON	A		AYRIDGE		ALL-	HTON
	Old Hace HAR BORN FLM PAPER				17	RANITEVILL		1X	(\prec)			SZ 🔨	BENSONHUE	MOU	and the
		-		RK SEY	HIBUL	S READ	SPAND	100 -	\sim	$\underline{\langle \rangle}$		<u> </u>	N/ M	At	HK
Ciologia				TEW YOU		(TT.	5	GRAS	MER	T	Grav	BEACH		11
		Googl		211		A 1	frank -	1 K		MRROCHA		evboard shortcut	Man data @'	021 Imagery ©20	BAY 121 TerraMetric

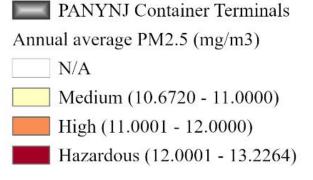
Less pollution farther away from the immediate local neighborhoods

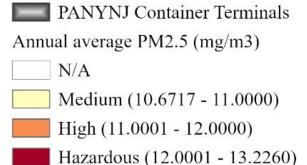

Pre-TRP

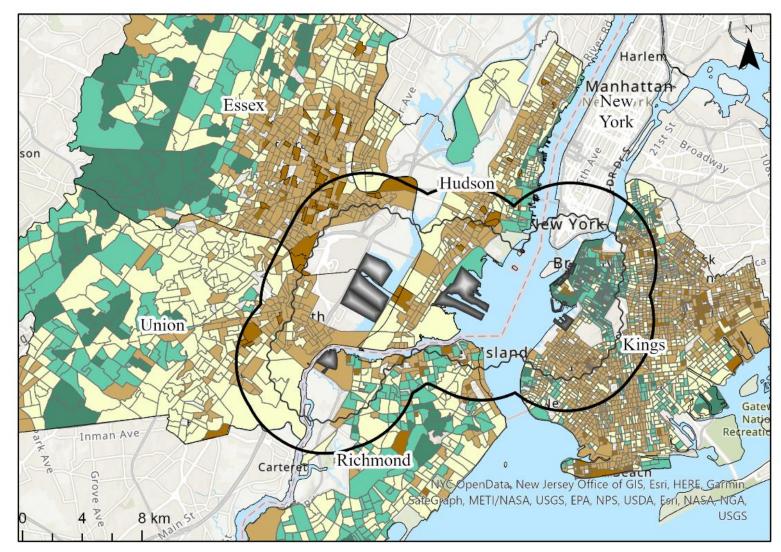
Groups?

Post-TRP

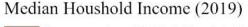
"NOx is much lower for near-port populations"

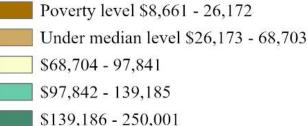

Source: Author's illustration

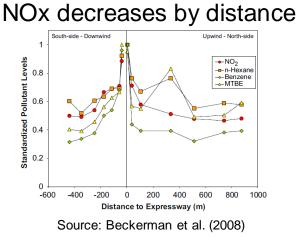

Less impact in terms of PM_{2.5}

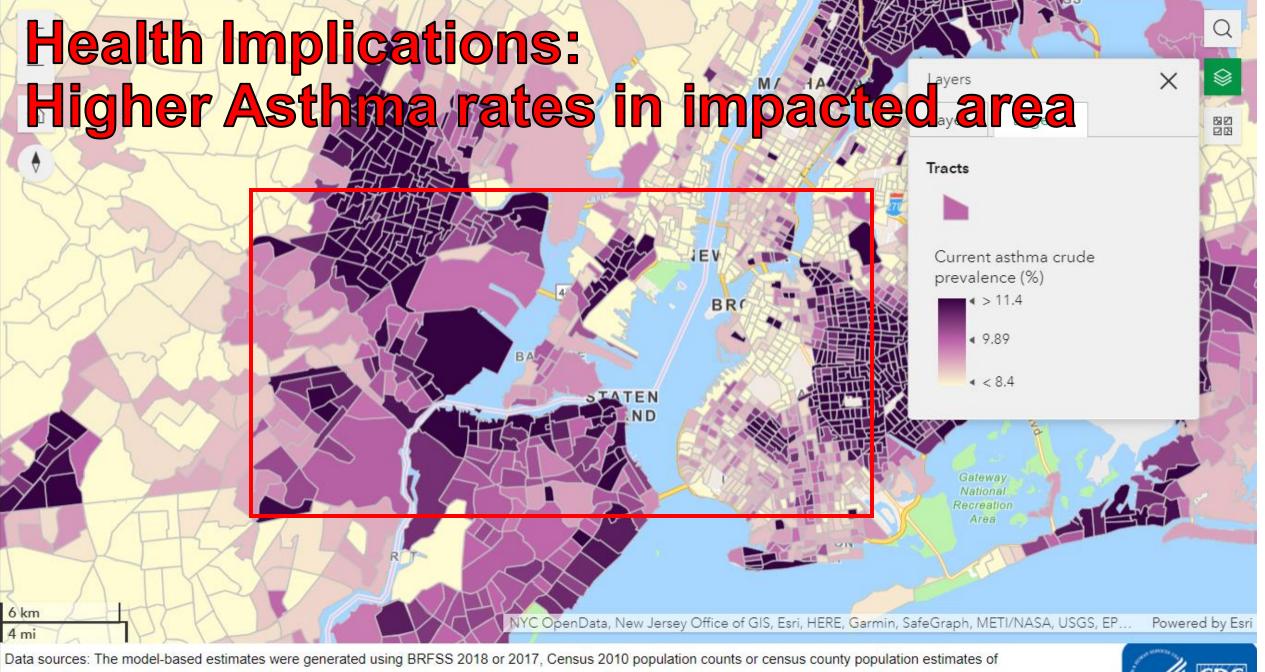

Pre-TRP

Post-TRP

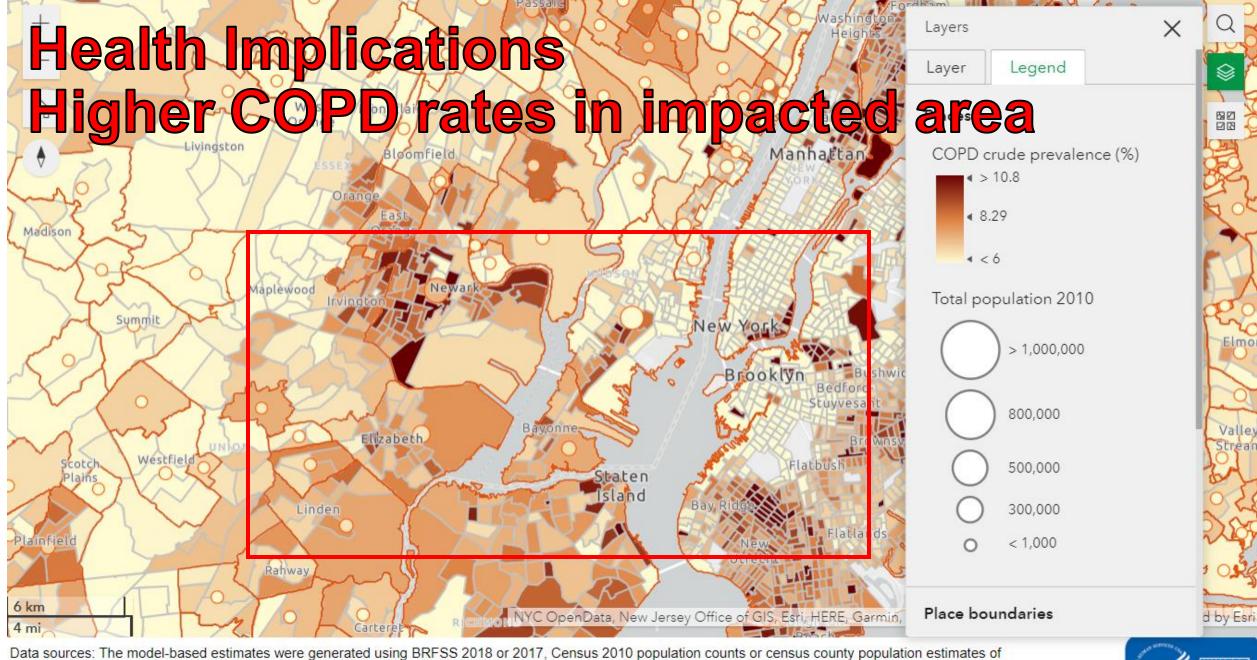





PANYNJ Container Terminals
 5km from Port Terminals
 3km from Port Terminals

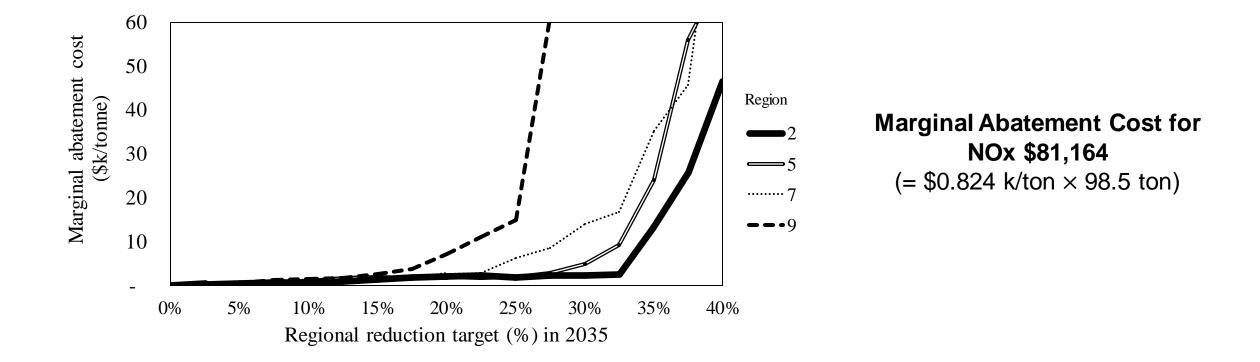


Policy Implications


"Lower-income group could benefit from cleaner air" (<= \$68,703 median Income ACS 2019)

2018 or 2017, and ACS 2014-2018 or ACS 2013-2017.

Credit: Centers for Disease Control and Prevention, National Center for Chronic Disease and Health Promotion, Division of Population Health, Atlanta, GA


2018 or 2017, and ACS 2014-2018 or ACS 2013-2017.

Credit: Centers for Disease Control and Prevention, National Center for Chronic Disease and Health Promotion, Division of Population Health, Atlanta, GA

Benefit-Cost Perspective: Net benefit, possibly?

	Benefit	Cost	
		-\$1.6 million	Total Direct Investment (DERA grant, 2010-2020) \$17.41 million
Asthma/COPD prevalence rates could potentially reduce (Annual per-person medical cost of asthma was \$3,266 (2015 base, ATS 2018) x 23,248 = \$75 million	+\$75 million	-\$ 9.6million	Premature mortality will increase by over 25 in a million in some areas. (Rowangould et al. 2018) In terms of value of statistical life, 1.000025 x VSL \$9.6 million (2015 base, USDOT) = \$ 9.60024 million
		-\$81,164	Marginal abatement cost for NOx
		?	Possibly delaying transition to adopt alternative fuel, electrification

Regional Marginal Cost of NOx Reduction

Note: Regions where the major container port terminals are located are selectively chosen for better comparison among the contiguous U.S. regions. Region 2 (Middle Atlantic: NY, NJ, PA), Region 5 (South Atlantic: DE, DC, FL, GA, MD, NC, SC, VA, WV), Region 7 (West South Central: AR, LA, OK, TX), Region 9 (Pacific: AK, CA, HI, OR, WA)

Source: Modified by author based on (Loughlin et al. 2017)

Highlights

- If all eligible trucks are replaced: Annual NOx emissions reductions of 12.8 % (98.5 tons), PM_{2.5} by 1.6 % (5.2 tons).
- PANYNJ Port Drayage Truck Replacement Program (TRP) could potentially contribute to improving the local NOx level by maximum 63 percent lower, below 53 ppb, which is the hazardous level of to human health.
- Most population living within the 5km-distance from the port container terminals are the vulnerable populations at the lower income level, and particularly those below the poverty line are located a lot more on the New Jersey side of the port terminals than that of New York.
- It can be inferred that the near-port populations include the lower income populations, with higher asthma prevalence rates and COPD rates and the lower NOx area after TRP implementation.
- Overall, considering the marginal benefits, costs, and time, TRP remains potentially the most affordable and practical interim policy to immediately reduce the local emissions among other alternative fuel options.

Full paper available at:

Case Studies on Transport Policy

Available online 8 May 2022

In Press, Corrected Proof 🧿

Emissions analysis of the Port Drayage Truck Replacement Program and local air quality: The case of the Port of New York and New Jersey

Gina Yeonkyeong Park⊠

Show more 🗸

+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.cstp.2022.05.004

Get rights and content

Thank you!

Gina Y. Park <u>yp394@cornell.edu</u>

Method: Idling Emissions Calculation

dling Emissions ($\left(\frac{tons}{year}\right) = \frac{\# \ of \ trucks}{}$	2 s × total idling time (hours/ 453.59 g/lb ×	3 /year) × emission < 2000 lb/ton	} factor (g/miles)			
1. No. of Truc	ks	Sources: Author's Estimation (*) and Truc	ck Reports by Port Authority of New	v York and New Jersey (PANYNJ)			
	Average number of	Average truck visits	Total number of	2. Total			
	annual total trucks	(per truck by model years)	annual truck visits	Idling Time (hrs)			
All models	195,099*	26.5	5,170,130	2,403,338			
Replaced	69*	28.9	1994.1*	1934.3*			
 Total idling hours = average idle time × total truck visits Total truck visits = average truck visits × total number of truck units Average truck visits = average truck visits per engine model years (03.2020 – 11. 2020) Average idle time per each visit: 0.97 							
3 Emissions f	actor (a/hr)·	L					

3. Emissions factor (g/hr):

Operation	NOx	PM _{2.5}	CO ₂
Short-Term Idle (g/hr)	52.9	4.281	8,598