

Reducing impacts of heavy duty trucks in communities of color

Genevieve Giuliano Robert Binder Hilda Blanco Sue Dexter Marley Randazzo

International Urban Freight Conference May 2022

Project Overview

Objective

• Reduce environmental impacts of freight traffic

Partners

 USC + SELA Collaborative + UCD + CSULA Pat Brown Institute + public agencies + other community stakeholders

Study Area

- 750,000 population, 62 mi²
- 11 cities + unincorporated areas
- Density about 12,000 pop/mi²
- Majority Hispanic
- CalEnviroScreen high pollution and high population burden
- Traversed by several freeways, Alameda rail corridor
- Ports to the south, intermodal rail yards to the north

Freight impact analysis

Theory

Environmental Justice

- Spatial segmentation
- Lack of political power
- Location of noxious facilities
- Air pollution
- Long term impacts

Community engagement

- Planners as advocates
- Arstein's ladder of participation
- Participatory action research
- Community engagement for community solutions

Community Engagement

- Southeast Los Angeles
 Collaborative major partner
- Project advisory committee
- Focus groups to launch research

First focus group

What comes to mind when you see this?

Fear Safety Accidents Pedestrians at risk Noise

Stories

- Truck jumped a curb
- Trucks on residential streets
- I don't drive where there are lots of trucks
- Children at risk walking to school

Origin-Destination Analysis

Trip Type	All HDTs	Share Regional Trips	
O-Ds Within SELA Trips	17,727	1.89%	
SELA Origin Trips	36,123	3.85%	
SELA Destination Trips	36,110	3.85%	
Trips Through SELA	104,839	11.17%	
All Regional Trips	938,381	100.00%	

- Freight impacts come mostly from through trips that do not begin or end in SELA
- Local freight hotspots and the high number of regional trips yield the need for mitigation recommendations

Freight volume density

With freeways

SELA TAZ Evaluation

Vernon

Huntington Park

Compton

Los Angeles

Maywood

Bell

South Gate

Lynwood

Long Beach

Carson

Cudahy

Trucks/day/mi²

With freeways	
SELA	40,000
County	25,500
Without freeways	
SELA	14,000
County	9,000

Crash analysis

- Heavy truck collision data 2015 2018
 - Source: Transportation Injury Mapping System (TIMS)
 - All reported collisions from local and gov't agencies
- Crashes within SELA
 - 45% on freeways, 55% on local roads, mostly major arterials
 - Most frequent crash causes: unsafe speed, automobile right of way, improper turning (together account for 60% of all crashes)

	SELA area	City of Los Angeles	Los Angeles County
Total crashes	743	2,674	7,935
Crashes per sq mi	11.4	5.7	2.0
Total fatalities	24	62	232
Fatalities/crash	3.2%	2.3%	2.9%

Hot Spot Locations Analysis – Non-Highway Crashes

*	Fatal or severe crashes
	Pedestrians involved
+	Crash at intersection
	2 crashes at same location
	3 crashes at same location
	4 crashes at same location
	All other street crashes

Recommended Locations for Analysis

1. Santa Fe Ave & Del Amo Blvd: intersection, mixed use

2. Alameda St. corridor: mixed use corridor, mixed use/school

3. Washington from Atlantic Blvd. to Downey Rd: freight corridor and mixed use

4. Elm St. & Santa Fe Ave: intersection, residential/schools

5a. Firestone Blvd. near Russell Elementary: mixed use corridor, mixed use/schools

5b. Southern Ave. from Long Beach Blvd. to San Carlos Ave" mixed use corridor, residential/schools

Case study: Firestone Blvd and Southern Ave

Modeling: Prohibit trucks on Southern Ave

- PTV Visum (Mesoscopic/Macroscopic)
- SCAG Travel Demand Model used to collect TAZ & RSA Origin-Destination tables
- AM Peak Period from 7AM 9:59:59AM
- Compare Firestone Boulevard and Southern Avenue, while considering intersection operations at Atlantic Avenue
- Scenario 1: No Trucks Allowed on Southern Ave
- Scenario 2: No Trucks Allowed on Southern Ave + Intersection/Capacity Improvements at Atlantic Ave

Findings from simulation

- Simulation helps understand localized problem and impacts of potential mitigation strategies
- Route diversion most likely due to congestion on Firestone
- Prohibiting trucks on Southern has little effect on Firestone
- Adding intersection improvements does not improve performance
- Confirms community perceptions re route diversion
- Strengthens case for geofencing

Thank you

giuliano@usc.edu

