

# On the evaluation of autonomous delivery robots in the food industry

#### **Carlos Otero**

Fourth-Year PhD. Student, Department of Civil & Environmental Engineering, cotero@ucdavis.edu

### **Miguel Jaller**

Associate Professor, Department of Civil & Environmental Engineering, Co-Director, Sustainable Freight Research Center mjaller@ucdavis.edu







### First of all: Why should we evaluate the operation of ADRs?

**Answer:** To better understand the capabilities, benefits, and unintended consequences of these systems as an alternative to mitigate the externalities of freight transportation

#### **Background:**

- ADRs are an environmentally-friendly alternative since they do not produce tail-pipe emissions. They are considered as a replacement for ICE vans in the delivery of parcels
- ADRs have proven to be a cost-efficient alternative to transport cargo in indoors environments.
- In theory, new technological developments have made ADRs a versatile and cost-efficient alternative for outdoor last-mile deliveries.
- More than 60% of merchants' customers live within 3 miles of the store location. (FedEx research).
- Traffic incidents involving ADRs have been more common in recent years.











## Our ADR: bot! by KiwiCampus



#### **Bot 3.0 series features:**

- Dual 4G LTE integrated GPS (communication system)
- 6 FOV 120° Cameras 1920\*1080P: 3 frontals, 2 laterals, and 1 rear.
- 7 Benewakes (LIDAR): 5 frontals, 2 rear
- 1 Al computing module Jetson TX2
- Digital face: 9" LCD Screen
- Spot-lights UV 200
- Swappable lithium-ion batteries
- . Payload capacity: one order
- Top speed: 10 mph.
- Pneumatic cargo compartment with remote opening/closing function.







## The hybrid delivery system: bicycle + ADR

#### **System description:**

- Customers order online
- 2. Restaurants have agreements with operator, facilitating the logistic process
- 3. Kiwers (biker) pick-up orders from restaurants
- 4. ADRs wait in strategic clusters to reduce the distance travelled
- 5. Kiwers load food to ADRs
- ADRs deliver food to customers
- 7. ADRs & Kiwers reposition









# Methodology

- 1. Field observation: descriptive analysis
- 2. Operation data analysis
- 3. Simulation and sensitivity analysis
- 4. Design of strategies to improve the system









# Safety, mobility, and potential road conflicts







# Safe sidewalk operation and crossing intersections; a big challenge

#### Relevant factors:

- Technological limitations,
   e.g., limited object recognition
- High network latency,i.e., delays in data reception
- Long reaction time by supervisors
- People's curiosity
- Required human intervention,
   i.e., offline devices, stuck wheels
- Sidewalk topology and geometry
- Traffic conditions









### Analysis of intersection delays





Pole Line and 5th Street: A complex intersection

#### Distribution of delays



- There were delays in 43% of the trials
- 10% of the delays range between 5 and 10.7 seconds
- 43% of the delays range between 1 and 5 seconds
- 47% of the delays range between 0 and 1 seconds







# Operation data analysis







# Semi-autonomous food delivery

# How can we deliver on-time using kiwers and bots?

- Distribution network design
- Bikers schedule and bots' fleet size
- Resource allocation to time-slots
- Queuing & repositioning
- Automation limitations













# Data analysis

#### **Weekly Operation Statistics**



### Ratio between delivery route distance and client-restaurant distance









# Data analysis

#### **Productivity by demand periods**



#### **Histogram of Bot & Kiwer Productivity**









## Semi-autonomous food delivery

- Raw data: ~ 16,000 orders
- Total delivery
  - Avg. time ~45 mins
- Restaurant preparation
  - Avg. time ~19 mins (42%)
  - From when an order is placed in the app until the kiwer receives the order
- Kiwer delivery
  - Avg. time ~11 mins (24%)
- ADR delivery
  - Avg. time ~10 mins (22%)
- ADR waiting for the client
  - Avg. time ~5 mins (11%)









# Scalability & Operations



• Delivery distance has an important effect on the system

#### **Density plot of speed**



 ADRs can travel faster but speeds are limited to avoid incidents and for better control







# Simulation Model







# Results of Monte-Carlo Simulation

Validation of simulation results for key parameters

| Variable                    | $\frac{1}{n}\sum X_n$ | μ      | Rel. Error | P-Value* | Dist. Fit                     | Parameters                | Log-Likelihood |
|-----------------------------|-----------------------|--------|------------|----------|-------------------------------|---------------------------|----------------|
| Avg Biker Speed             | 3.416                 | 3.420  | -0.132%    | 0.471    | <i>Gamma</i> K=2.352, θ=1.453 |                           | -6.686E+05     |
| Avg Bot Speed               | 0.985                 | 1.020  | -3.431%    | 1.22E-08 | Triangular                    | a=0.052, c=0.821, d=0.239 | -6.146E+05     |
| Avg Bot Proportion          | 0.306                 | 0.307  | -0.520%    | NA       | NA                            | NA                        | NA             |
| Avg Bot Delivery Time       | 10.202                | 10.221 | -0.188%    | 0.408    | Gamma                         | K=1.514, θ=6.749          | -1.048E+06     |
| Avg Biker Delivery Time     | 10.815                | 10.807 | 0.077%     | 0.741    | Gamma                         | Κ=1.501, θ=7.196          | -1.066E+06     |
| Avg Restaurant Prep. Time   | 19.142                | 19.079 | 0.329%     | 0.071    | Gamma                         | K=2.338, θ=8.157          | -1.210E+06     |
| Avg Waiting for client Time | 4.317                 | 4.330  | -0.300%    | 0.375    | Gamma                         | K=0.700, θ=6.180          | -7.728E+05     |
| Avg Delivery Time           | 44.476                | 44.438 | 0.086%     | 0.446    | Gamma                         | K=6.218, θ=7.146          | -1.356E+06     |

<sup>\*</sup> Z-test P-Value; k: Shape; ϑ: Scale; a=lower bound; c=mode; d=upper bound.







## Impact of demand levels on delivery times











# Impact of demand levels on productivity



**REVOL**<sup>1</sup>TIONS

SHARED · AUTOMATED · ELECTRIC

## Impact of automation on the system performance

- Required Person-Hours includes labor of Kiwers (bikers) + supervisors
- Robots capable of making a greater number of correct decisions require a higher level of automation
- Supervisors must reason decisions in situations that are unknown to the ADRs.
- Full automation may not be cost-efficient; supervise more than 6 robots reduce less than 6% of labor









# Strategies to improve the system: Dispatch policies







## Decision support plots for different Wait-for policies



# Summary of Wait-for policies impacts on the HDS

|                       | 10% time/35% labor red. |            | 5% time/30% labor red. |            | Max. labor red. |            | Max. time red. |            |
|-----------------------|-------------------------|------------|------------------------|------------|-----------------|------------|----------------|------------|
|                       | ADT                     | Avg. Labor | ADT                    | Avg. Labor | ADT             | Avg. Labor | ADT            | Avg. Labor |
| Net Value             | 39.84                   | 11.48      | 42.17                  | 12.46      | 45.72           | 10.32      | 38.63          | 27.05      |
| % Change*             | -10.33%                 | -36.04%    | -5.09%                 | -30.58%    | 2.90%           | -42.51%    | -13.05%        | 50.70%     |
| * Relative change wit | respect to the bas      | e case     |                        |            |                 |            |                |            |







# **Summary of Findings**







## Findings: efficiencies/inefficiencies

#### Times:

- Restaurant preparation time + Client picking/collection time ~53 % of delivery time;
- Delivery time ~45 minutes within 1.25 miles and 56.29 miles within 2 miles
- When service time and labor requirements are equally valuated, the BDS is 5% faster than the HDS, but the latter requires 42% less labor

#### Market coverage:

- About a 1 1.5 mile radius (times are significantly larger after the 1.5 mile distance)
- Spatial (dis) aggregation of demand affects resource requirements in 3-4x
- Kiwers traveling ~2/3 of distances (about double the speed)

#### Human-hours of hybrid model:

- Fully ADRs vs. No automation of "DRs" can reduce human-hours requirements by 45-65%
- Even in low to mid automation levels, remote supervision can bring significant reductions in costs









### Any questions? Please contact:

### **Carlos Otero**

Department of Civil & Environmental Engineering, University of California, Davis

cotero@ucdavis.edu







# Impact of dispatching policy on productivity











### Potential improvements

- Improvements:
  - Network design (multimodal, hubs)
  - Waiting/dispatch policies
  - Repositioning
  - Cluster evaluation (staging and transfer areas)
  - Decisions on Kiwer/ADR delivery split
- Impacts:
  - Potential traffic delays/conflicts with other curb users
  - Jobs
  - Requires transfer locations















# **Next Steps**







# Potential next steps

- Spatial and network modeling
- Multi-objective: Costs, labor, time, emissions, energy consumption, etc.
  - Time windows
  - Cluster locations
  - Backbone design (modes)
  - Dynamic demand/dispatching
- Efficient system deployment and operation methodology
- Traffic and sidewalk operation/policies
  - Intersection and sidewalk conflicts





