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Motivation

e Urban planning
o Introduce new lanes/roads where trucks over-congest the network
o Reinforce or more frequently maintain roads that are more likely to be damaged by trucks

e Air quality
o Effect of trucks on air pollution in areas they frequently pass by or drive to

Long Beach to Open New $1.5 Billion Gerald COVID-19 Reveals That the Real Cure For Freight
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With three lanes in each direction, the bridge will be able to accommodate more
truck traffic. The old bridge carried up to 16,000 trucks per day. Photo by Ringo
Chiu.
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Trucks stand prepared to haul shipping containers at the Port of Los Angeles on Sept. 18, 2018. (Mario TamalGetty Images)



eal Scenario - GPS
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Reality -- Discrete Sensor Observations
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Legend
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® Destination
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going on at
time t,p,.

One large truck
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One small truck
at time t,.




Outline

Motivation

Problem Statement
Data Sources
Algorithms

o Baseline
o Naive / FlowPath
o Reachability-based

e EXxperiments
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Problem Statement

Given a region of interest R, its road network G, and a sensor-based dataset 6, estimate
the volume of truck movements per time unit (e.g., 1 hour).

Research goal:
To accurately estimate the time-dependent flow of trucks in a road network.
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Sensor Data

@ Lymwood ®

e RFID sensors (very accurate) 3
o  Typically at port exits; truck “check-out”
o <location, timestamp, truck type> + <truck id>
o Refers to a specific truck id
e Weigh-in-motion (WIM) sensors (very accurate) .
o  Sparse but provide checkpoints e P ®
o <location, timestamp, truck type> + <truck id> Truck detection; ac ooy -
e TAMS [1] sensors (accurate) “checkpointing” ’ Be 00X
o Sparse and probabilistic B
o <location, timestamp, truck type prob.> ® 'I
e CCTV cameras (variable accuracy) il i e b
o Sparse and probabilistic
o <location, timestamp, truck type prob.> )
e Inductive Loop Detectors Traffic N e
o ADMSI[2] T

[1] Tok, Yeow Chern & Hyun, Kate & Hernandez, Sarah & Jeong, Kyungsoo & Sun, Yue & Rindt, Craig & Ritchie, Stephen. (2017). Truck Activity Monitoring System
(TAMS) for Freight Transportation Analysis. Transportation Research Record Journal of the Transportation Research Board. 2610. 10.3141/2610-11.

[2] Anastasiou, Chrysovalantis, Jianfa Lin, Chaoyang He, Yao-Yi Chiang, and Cyrus Shahabi. "Admsv2: A modern architecture for transportation data management and
analysis." In Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Advances on Resilient and Intelligent Cities, pp. 25-28. 2019.
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Sensor Observation Examples

12:00pm 12:48pm
® @-
St

Sensor Observations

Sensor Timestamp

S; 12:48pm
S, 12:539pm
S3 1:15pm
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12:59pm 1:15pm 1:22pm
s =k
@ @ ®
S, S5
Truck Class Prob.

Small Medium Large

0.04 0.96 0.00

0.07 0.92 0.01

0.05 0.93 0.02
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Truck Flow Estimation

e Input e Output
o G =(V, E)the road network o T the set of truck flow time-series;
o Sthe set of sensors one per edge/road segment
o O the set of sensor observations
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Baseline Algorithm

e Counts the number of trucks on the sensor’'s road segment

Very sparse estimation — Low recall

[-NUF"22

9th International Urban Freight Conference

Legend
© Intersection

== Road Segment
@ Ssensor

== Flow Segment
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Naive Flow Path Expansion

e Counts the number of trucks on the sensor’s road Legend
seg ment. : ::tersection
. . oad Segment
e Expands backwards and forwards as long as intersection @ sensor
does not affect flow count. — Flow Segment
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Naive Flow Path Expansion

e Counts the number of trucks on the sensor’s road

Legend
t © Intersection
Segmen ’ . . == Road Segment
e Expands backwards and forwards as long as intersection @ sensor

does not affect flow count.

== Flow Segment

e Somewhat denser estimation — Better recall

No idea
No idea where it w
where it is came from!
going to!
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Reachability-based Estimation

e Counts the number of trucks on the sensor’s road segment.

Legend
e Expands backwards and forwards as long as intersection does not affect @ intersection
ﬂ nt == Road Segment
ow count. @ sencor

e Propagates flow if observation in next sensor is reachable from previous.
o Requires time-dependent traffic data

== Flow Segment

=
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Reachability-based Estimation

e Counts the number of trucks on the sensor’s road segment.

Legend
e Expands backwards and forwards as long as intersection does not affect @ intersection
fI nt == Road Segment
ow count. . o . . ® sensor
e Propagates flow if observation in next sensor is reachable from previous.

== Flow Segment

o Requires time-dependent traffic data

=

~24
minutes
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Reachability-based Estimation

e Counts the number of trucks on the sensor’s road segment. Legend
e Expands backwards and forwards as long as intersection does not affect @ intersection
fI nt == Road Segment
ow count. . o . | ® sensor
e Propagates flow if observation in next sensor is reachable from previous. — Flow Segment
o Requires time-dependent traffic data
e Denser estimation — Higher recall
Risk of false positives — Lower precision
minutes
g O
+1?
_’
”
=R
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Experimental Setup

e Datasets
o SYNTH(S, T): Synthetic datasets with S sensors and T trucks
m S ={100, 150, 200, 250, 300}
m T ={250, 500, 750, 1000, 5000}
m “Simulates” truck trajectories and generate sensor observations

e Algorithms
o Baseline: Only estimates at edges where data is sensed.
o FlowPath: Extrapolates flow based on logic.
Reachability-based

e Metrics
o Precision: Percentage of graph edges in estimation that exist in ground truth
o Recall: Percentage of graph edges in ground truth that are in estimation
o MAE: Mean Absolute Error of flow estimation
o MAPE: Mean Absolute Percentage Error

|GroundTruth N Estimation| |GroundTruth N Estimation|
— Recall =
|Estimation| |Ground Truth|

I-NUF'22 9th International Urban Freight Conference

Precision =

16



Experimental Results

e 300 sensors, 1000 trucks
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Edges: 94 (TP/94, FP/0)
Precision: 100%
Recall: 10%

MAE:
MSE:
RMSE:
MAPE:

7.464
170.651
13.063
89.22%

Edges: 334 (TP/327, FP/7)
Precision: 98%
Recall: 37%

MAE:
MSE:
RMSE:
MAPE:

4.858
104.845
10.239
63.27%

9th International Urban Freight Conference

MAE:
MSE:
RMSE:
MAPE:

Edges: 702 (TP/666, FP/36)
Precision:
Recall:

95%
75% X
3.054
72.999
8.544
40.08%

2x
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Experimental Results

e 200 sensors, 1000 trucks
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Edges: 63 (TP/63, FP/0)
Precision: 100%
Recall: 7%

MAE:
MSE:
RMSE:
MAPE:

7.807
177.910
13.338
92.79%

Edges: 226 (TP/219, FP/7)
Precision: 97%
Recall: 25%

MAE:
MSE:
RMSE:
MAPE:

6.065
130.300
11.415
75.28%
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Edges: 601 (TP/564, FP/37)
Precision: 94%
Recall: 63, X

MAE:
MSE:
RMSE:
MAPE:

4.000
90.450
9.510
51.20%

1.5x
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Experimental Results

Varying number of sensors (trucks = 1000)

metric = precision metric = recall metric = mae metric = mse 10 metric = mape
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Summary & Future Work

e Critical for planners and decision makers to understand freight flow
e Estimating the volume of trucks from sensor data is feasible

e Reachability-based approach yields more accurate results

o 9x higher precision compared to the baseline
o 2x improvement in MAE

Future work
e Improve computational efficiency and accuracy of algorithm
e Validate approach with real-world data

e Infrastructure optimization
o where should the next sensor be installed in order to improve accuracy?
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