

A Guidebook for Implementing Freight Fluidity for Texas and Its Regions

Bill Eisele, Ph.D., P.E., PMP Senior Research Engineer & Mobility Division Head Texas A&M Transportation Institute

May 27, 2022
The International Urban Freight Conference (I-NUF)
Long Beach, California

The Guidebook

Authors:

- Nicole Katsikides, TTI
- Bill Eisele, TTI
- Mario Monsreal, TTI
- Jason Wallis, TTI
- William Hwang, TTI

Sponsored by TxDOT (Freight Team)

 Casey Wells, Sherry Pifer, Caroline Mays

Implementing Freight Fluidity for Texas and Its Regions

A Guidebook

Nicole Katsikides, Ph.D.
Bill Eisele, Ph.D., P.E., P.M.P.
Mario Monsreal, Ph.D.
Jason Wallis
William Hwang, Esg.

July 2021

What is Freight Fluidity?

"Freight fluidity is measuring trip performance to determine how efficiently goods are moving in a region. It involves answering questions like: What are the goods? How do they get from point A to point B? What's the route?"

TxDOT Freight Fluidity Guidebook

Example Transportation Element of a Supply Chain – The Trip a Good Makes

Factory Truck Port Ship Truck Consumer

What is Different About Freight Fluidity From Monitoring Congestion?

- Freight Fluidity puts transportation agencies together with business
- Freight Fluidity is about the trip
- It is a way of thinking about freight transportation and seeing it through the lens of a business
- Creates an awareness of the types of goods movement and/or supply chains
- Information can be integrated with safety, environment, and asset condition data to show a good's trip comprehensively
- Freight fluidity helps position an agency (TxDOT) and its regions to have defensible information for freight investments
- The agency (TxDOT) then knows more about the trip experience and how to address bottlenecks to be most effective

Why Does it Matter?

In general...

- Freight bottlenecks impact the economy
- Mobility problems increase the cost of business
- Jobs may be impacted
- Economic growth may be limited
- Fluidity issues may impact safety
- Delay and congestion can impact the environment
-and freight movement is only important if you eat, or buy anything, ever

How will the Guidebook help?

Guidebook's relation to TxDOT's Freight Mobility Plan goals

Economic Competitiveness

 Enhance economic competitiveness, productivity, and development of the state

Mobility and Reliability

- Reduce congestion
- Improve efficiency and performance

Multimodal Connectivity

- Provide transportation choices
- Improve system connectivity for freight

Customer Service

- Incorporate citizen feedback
- Transparency in TxDOT communications

Benefits and Challenges for Freight Fluidity Analysis

Benefits

- Helps identify bottlenecks, provides detail for decision-making that aligns with the business experience
- Numerous highway resources providing information such as:
 - · Delay per mile ranking
 - Cost of Congestion
 - Commodity Value by Segment
 - Air Quality impacts due to Delay

Challenges

- Primarily highway data available, multi-modal takes some work
- Needs to be considered with other analytics or supply chain analysis **Texas A&M**

Guidebook Examples and Resources

What are the key goods and how are they transported?

- -Texas Freight Mobility Plan
- -Regional Freight Transportation Plans
- -Freight Analysis Framework

Where Is the Economic Opportunity?

- -Census Bureau Commodity Flow Survey
- -Bureau of Economic Analysis (industries, production, consumption)

How Well Are Freight Corridors Moving Freight?

- -"TX100", TCAT, UMR
- In-Depth, Location-Specific Information using NPMRDS
- Multimodal: Port and Border Crossing Analysis

Recipe for Fluidity

- Identify the route of the commodity (e.g., Origin is Houston, travels by truck to Port of Houston, Gulf shipping)
- Use available resources (available visualization/other tools) to identify travel times, performance for the truck route.
- Use truck volumes to see changes along the route
- Match with multimodal mobility data if available (e.g., ship call, available Marine data, https://cirp.usace.army.mil/products/aisap.php, some ADS-B air cargo data available.)
- Sophisticated analytics can involve crowdsourced probe data for specific detail.
- Continue Involvement! MPO Discussions, DOT, State and local representatives

Matrix for Using the Freight Fluidity Guidebook – What Questions are You Trying to Answer?

			What Questions Are You Trying to Answer?									
								What Can We Understand				
			What Key		Where Are The		How Well Does		about			
		Goods or		Economic		Texas's System		Multimodal		Where Can I		
			Freight Move in		Relations and		Perform for		Connections		Get Information	
	What Bosources Are	. Availabla	Texas?	Page	Opportunities?	Page	Freight?	Page	and Impacts?	Page	in a Hurry?	Page
	for Understanding Freight Fluidity?		Freight Fluidity in Detail	9			Framework Development	22	Port	27	Texas 100	31
			Texas Freight Mobility Plan	10	Economic Analysis of Trading Partners and Opportunities	12	Bottlenecks	23	Border	28	COMPAT/TCAT	32
			Regional or Local Plans	11			Performance Measurement/ Visualization	24	Next Steps	34	FHWA Freight Mobility Trends	33
			Freight Analysis Framework	12			Multimodal Trip Connections	26				
			Main U	ser	Main U	ser	Main U	ser	Secondar	y User	Secondar	y User
	Who Is the User?	Planner/ Policy Analyst	Main U	ser	Main User		Main User		Main User		Main User	
		Operator	Secondar	y User	Secondary User		Main User		Main User		Main User	
		Industry Partners	Main User		Secondar	y User	Main User		Secondary User		Secondary User	

Sample Bottlenecks Insights (to inform Freight Fluidity)

Houston, TX

Year:

Report for Houston, 4th in the nation for truck congestion in very large urban areas. New York, Los Angeles, and Chicago are highest. Dallas ranks

https://mobility.tamu.edu/umr/

#6.

What Time Did Congestion Happen in 2020?

Delay Split Cost Comparisons

2020 Congestion

•			
Total Annual Delay:	169,765K Hours	Planning Time Index (PTI):	
Delay Rank:	4	PTI Rank:*	
Annual Delay/Commuter:	49 Hours	Travel Time Index (TTI):	1.15
Delay/Commuter Rank:	3	TTI Rank:	6
Congested Weekday			

Economic Cost Components

Annual Congestion Cost:	\$3,795M	Value of Time:	\$20.17/Hour
Annual Congestion Cost Rank:	4	Commercial Value of	\$55.24/Hour
Congestion Cost/Commuter:	\$1,097	Avg State Gasoline Cost:	\$2.05/Gallon
Congestion Cost/Commuter	5	Avg State Diesel Cost:	\$2.51/Gallon

Truck-Based

Annual Truck Delay:	7,950K Truck Hours	Wasted Truck Fuel:	14,010K Gallons	Ī
Truck Delay Rank:	4	Wasted Truck Fuel Rank:	4	1
Annual Congestion Cost	\$420M	Excess CO2 from Trucks:	194K Tons	1
Congestion Cost (Trucks) Rank:	4	Excess CO2 from Trucks Rank:*	4	١

*Rank based on 101 legacy urban areas rather than all 494 urban areas

Environmental

Excess Fuel Consumed:	68,295K Gallons
Excess Fuel Consumed Rank:	4
Wasted Fuel/Commuter:	21 Gallons
Wasted Fuel/Commuter Rank:	2
Excess CO2 from Congestion:	681K Tons
Excess CO2 from Congestion	4

Texas Department of Transportation 100 Most Congested Roads

						→		Annual Hrs of Truck	T	PTI		Annual Congestion Cost (M)	Annual Truck Congestion Cost (M)
Rank	Rank Truck		Roadway	From	То	County	Annual Hrs of Delay per Mile	Delay per Mile			CSI		
1	2		610	IH 10 / US 90	US 59 / IH 69	Harris	1,112,917	68,89	2.45	3.89	3.25	\$90.63	\$20.99
2	1	II	35	US 290 N	SH71	Travis	1,085,136	108,645	2.71	4.73	3.54	\$215.22	\$72.33
3	3	U	59	IH 610	SH 288	Harris	870,291	51,604	2.12	3.36	2.17	\$105.83	\$23.64
4	44	W R F	odall dgers y	US 75	N Beckley Ave	Dallas	748,546	14,976	2.03	3.06	2.31	\$21.31	\$1.81
5	5	IF 90	10 / US	N Eldridge Pkwy	Sam Houston Tollway W	Harris	659,959	48,855	1.95	3.33	2.30	\$50.23	\$13.43
6	9	ľ	45	Sam Houston Tollway N	IH 610	Harris	656,582	39,713	1.69	2.33	2.01	\$135.37	\$31.08
7	4	H	635	IH 35E / US 77	US 75	Dallas	584,661	49,538	1.86	2.58	2.34	\$112.58	\$33.59
8	14	1H 77	35E / US	SH 183	IH 30	Dallas	555,861	32,302	1.72	2.62	2.14	\$67.3	\$14.81

https://mobility.tamu.edu/texas-most-congested-roadways/

IH 10 / US 90

US 75

28

27

530,579

525,050

1.68

1.61

2.58

1.94

\$35,069,655

\$88.543.351

North Fwy / IH 45

Lyndon B. Johnson Fwy / IH 635

N Loop Fwy / IH 610

Stemmons Fwy / IH 35E / US 77

Select Link Analysis - Heat Maps

Truck Trip Patterns (for All Trucks Using I-35W Northbound in Downtown Fort Worth)

Sample Multi-modal Opportunities (to inform Freight Fluidity)

Developing and Implementing a Freight Fluidity Management Framework for U.S. Ports (U.S. Army Corps of Engineers)

Port of Mobile, Alabama

AIS Plot of All Vessels (Port of Baltimore)

Dwell Time at Terminal Areas (Port of Baltimore)

Port Fluidity Analysis

- Practical Interpretation of Results (Port of Brownsville, Texas):
 - The coefficients represent unitary increments of traffic per roadway and direction by a unit of change in sea import or export flows.
 - Example:
 - Model 1 B2out (SH 48 Outbound), a unit of sea cargo (e.g., one ton) arriving at the
 Port of Brownsville, is expected to be associated with an increase of outgoing traffic
 (from the port) in SH 48 (B2) in the same week ("lag0" model) by 0.095%, and by
 0.070% two weeks before ("lag2" model) vessel arrival.
- For a single vessel visit carrying 1,000 TEUS, this translates into 15 more trucks per week in the same week, and 11 more trucks per week two weeks before going out of the port on SH 48.

Model 1 (Imports)

Import_lag0 (0.0009541) Import_lag2 (0.0007017) Same

SH 48 Outound (B2Out)

Same week (+15 trucks) 2 weeks prior (+11 trucks)

Model 1 (Imports)

Contact Info & Selected Resources

Bill Eisele, Ph.D., P.E., <u>b-eisele@tti.tamu.edu</u>, 979-317-2461 (find me on LinkedIn)

Texas A&M Transportation Institute Mobility Division

http://mobility.tamu.edu

- TTI 2021 Urban Mobility Report, https://mobility.tamu.edu/umr/
- Transportation Research Board, Urban Freight Transportation Committee
 - http://urbanfreight.tti.tamu.edu
 - "Urban Freight Transportation Committee Centennial Paper: Embracing the Future with Insights from the Past"

