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Freight Mode v/s Vehicle Type
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➢ Mode Choice:

• Road, rail, air, water

• Most relevant for inter-city, statewide, and national level studies

➢ Vehicle Type Choice:

• Road-based mode: Passenger car, trucks, vans, etc.

• Most relevant for city or metropolitan area level studies



Background and Motivation

4

▪ Freight flows have been increasing in Canada.

– 16.7% increase in freight shipments from 2011 to 2017 (Statistics Canada 2020)

▪ Economic development of regions

▪ Global competitiveness of industries

▪ Changing trends in supply chain and logistics

▪ Major contribution to greenhouse gas emissions!



Background and Motivation
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Background and Motivation
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▪ Implications on quality of life of urban residents

– Noise pollution

– Traffic congestion

– Safety impacts

– Parking problems

– Pavement damage



Study Objectives
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▪ Study the factors behind freight vehicle type choice

▪ Comparison of discrete choice with machine learning methods

– Discrete choice: Multinomial and mixed logit model

– Machine learning: Random Forest



Study 
Area
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Data Source
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➢ Commercial Travel Survey

➢ Region of Peel (2006/07), Region of Durham (2010), Toronto Area (2012)

➢ Outbound Shipments

➢ 1,439 shipments 

➢ 385 firms

➢ Explanatory Variables

➢ Industry type, commodity type

➢ Shipment origin and destination (cities)

➢ Employment and shipment weight
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Data Source – Vehicle Types
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Random Forest
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Random Forest – Variable Importance
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➢ Shapley Additive Explanation (SHAP)

• To assess the impact of explanatory variables on the model output

• Comparison of model prediction with and without the variable

• SHAP value is calculated for every observation

• Variables are sorted based on the impact

• Color of the point shows its value

• Red: high value

• Blue: low value 



Training v/s Testing Data
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➢ Models are developed on training data

• RF: 10-fold cross validation

➢ Model prediction accuracy is calculated on testing data

➢ Training and testing data are divided based on firms 

➢ Training data: 269 firms with 1114 shipments (70%)

➢ Testing data: 116 firms with 325 shipments (30%)



Results
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Variable Importance
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Variable Importance

MNL: 1.64

Mix-MNL: 1.79 
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Variable Importance

MNL: 0.88
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Variable Importance



Discrete Choice Methods
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➢ Larger firms are more likely to use larger vehicles

➢ Larger vehicles are more likely to be used for heavier shipments

➢ Intracity shipments are more likely to be transported using smaller vehicles

➢ Larger vehicles are more likely to be used for shipments destined outside of Toronto Area
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Model Predictions
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Prediction Accuracy
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Results Summary

➢Overall prediction accuracy

➢Random Forest: 50%

➢MNL: 42%

➢Mix-MNL: 40%
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Conclusion

➢Applications in policy analysis

• Demand for parking facilities

• Greenhouse gas emissions

• E-commerce, same-day deliveries



Conclusion
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▪ Freight vehicle type choice is studied using discrete choice and RF methods

▪ Commercial travel survey data are used to develop models for the Toronto Area

▪ RF results are interpreted using SHAP based variable importance

▪ RF model has higher prediction accuracy than DCM



More about this work!
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• More details about models and results can be found in:

Ahmed, U., & Roorda, M. J. (2022). Modeling freight vehicle type choice

using machine learning and discrete choice methods. Transportation Research

Record, 2676(2), 541-552.


