EXPLORING THE POTENTIAL OF DRONES FOR URBAN DELIVERIES IN THE HEALTHCARE SECTOR

Sofia Magnusson & Pauline Hagerfors Chalmers University of Technology

Drone deliveries of medical goods in urban healthcare

Patient safety improvements enabled by a drone-based logistics system Master's Thesis in the Master's Program Management and Economics of Innovation

SOFIA MAGNUSSON PAULINE HAGERFORS

Co-authors: Iván Sanchez-Diaz & Patrik Alexandersson, Chalmers University of Technology

In collaboration with The Urban Freight Platform (UFP), Volvo Research and Educational Foundations (VREF) & Innovation Platform Region of Västra Götaland

AGENDA

CASE CONTEXT

The study focus on the largest hospital in the region, spread geographically at three different hospital sites

BACKGROUND

Centralization of supporting services and goods in healthcare

Pre-study showed time-saving potential*

*50-70% faster compared to roadbased transport

RESEARCH QUESTIONS

RQ1

How can patient safety be supported by a drone-based delivery system of medical goods within an urban healthcare organization?

RQ2

Which types of medical goods are initially most beneficial to be delivered by drones from a patient safety perspective?

DELIMITATIONS

DATA COLLECTION

Semi structured interviews

Observations

Secondary data Transport statistics

FOCUS OF EMPIRICAL FINDINGS

The focus of the empirical findings was based on Kriegel's (2009) division of medical goods.

Current state analysis and mapping of:

- Regular deliveries
- On-demand deliveries
- Goods characteristics
- Logistic system risk factors

		1		1 '	· ·			
Pharma- ceuticals	Standardized pharma- ceuticals	Small to large	Low to high	Sometimes	Traceability Temperature Humidity Stability* Security (risk of theft)*	Sometimes	Low to high	Yes
	Extempore pharma- ceuticals	Small to medium	Low to medium	Rarely	Traceability Temperature Humidity Stability* Security (risk of theft)*	Sometimes	Low to high	Yes
Sterile goods	Reusable sterile goods	Small to large	Low to high	Rarely	Three-layers package	No	Low to high	Yes
	Consumable sterile goods	Small to medium	Low to medium	Rarely	Three-layers package	No	Low to medium	Yes
Laboratory samples	Healthcare laboratory samples	Small	Low to medium (with ice)	Daily	Traceability Temperature Stability*	Yes	Low	No*
	Research laboratory samples	Small	Low to medium (with ice)	Depends on each research project	Traceability Temperature Stability*	Yes, until aliquoted. Later coded.	Low	No*
Blood supplies	Blood	Small	Low	Daily	Traceability Temperature (2-6 'C) Stability	Yes	Medium (ca €100)	Yes
	Plasma	Small	Low	Sometimes	Traceability Temperature (2-6'C)	Yes	Medium (ca €50)	Yes
	Thrombocytos	Small	Low	Sometimes	Traceability Temperature (20-24'C) Movement		Medium (ca €200-400)	Yes

Medical goods

Medical devices

Sub-

categories

Size

Small to large

Weight

Low to high

On-demand

deliveries

Rarely

Transport require-

ments

N/A

Personal

No

information

Economic value

Low to high

Replace-ability

Yes

EMPIRICAL FINDINGS

REGULAR DELIVERIES

- Extensive network
- High volumes
- Non-urgent goods
- Goods usually pass consolidation hubs at each hospital site
- Available daytime, weekdays

ON-DEMAND DELIVERIES

- Time critical goods
- Low volumes, small and lightweight goods;
- Unpredictable need
- Goods delivered directly to units
- Limited availability of currently used transport modes

GOODS CHARACTERISTICS

- Goods vary in:
 - o Size
 - Weight
 - Transport requirements
 - Personal information
 - Economic value
 - Replaceability

LOGISTICS SYSTEM RISK FACTORS

- Deviations
 - Unreliable lead times
 - Human errors
 - Lack of traceability
- Lack of security
 - No authorizations
 - Boxes not lockable
- High number of transfers

DISCUSSION AND CONCLUSION

RQ1

How can patient safety be supported by a drone-based delivery system of medical goods within an urban healthcare organization?

BENEFITS OF DRONE DELIVERIES

Centralization

Increased service levels Resource efficiency Specialization On-demand deliveries Reduced lead times Reliable deliveries

Logistics to support patient safety

Healthcare

Drones

Less human errors Cost savings Traceability Flexibility Security

PATIENT SAFETY BENEFITS ENABLED BY THE USE OF DRONES

Patient safety aim	Enablers through autonomous drone deliveries
Safe	Reduced risk of errors and number of transfers related to deliveries. Improved security, traceability and transparency in the delivery system.
Effective	Reduced overcapacity in terms of payload and human resources.
Patient-centered	Less waiting time for patients, which improves flow efficiency and patient centricity.
Timely	Increased reliability in delivery lead time. Reduction in the number of deviations.
Efficient	Increased utilization rates due to fewer delays and possibilities for further centralization.
Equitable	Improved flexibility of deliveries in terms of both location and time.

RQ2

Which types of medical goods are initially most beneficial to be delivered by drones from a patient safety perspective?

GOODS COMPATIBLE WITH DRONE DELIVERIES IN AN INITIAL STATE

CRITERIA OF GOODS COMPATIBLE WITH DRONE DELIVERIES

CRITERIA APPLIED TO
DELIVERIES IN THE CASE STUDY

- Low volumes
- Urgently needed goods
- Lightweight and small goods
- Replaceable goods
- Low to medium economic value
- High frequency of on-demand deliveries

Blood supplies

Healthcare laboratory samples

Not suitable for all samples due to their irreplaceability

Much more complex delivery system

PROJECT STATUS AND FURTHER RESEARCH

- Ongoing collaborative research project
 - Research Institute of Sweden
 - Innovation Platform VGR
 - Drone navigation software company
- Successful test flights this summer

Need for extensive further research. Examples:

- Last leg deliveries
- Technical requirements; weather conditions etc.
- Operational aspects
 - Internal solutions
 - Drone operators/control tower

THANK YOU FOR LISTENING

TIME FOR QUESTIONS

Full report: https://hdl.handle.net/20.500.12380/256792 **Contact:** sofia.m.magnusson@pwc.com & pauline.hagerfors@tmceurope.com

