Air Quality Benefits of Switching a Freight Ferry from Diesel Fuel to Natural Gas

Weihan Peng^{a,b}, Jiacheng Yang^{a,b}, Qi Li^{a,b}, Joel Corbin^c, Una Trivanovic^d, Prem Lobo^c, Patrick Kirchen^d, Steven Rogak^d, Stéphanie Gagné^c, David R. Cocker III^{a,b}, J. Wayne Miller^{a,b}

a. College of Engineering - Center for Environmental Research & Technology, University of California Riverside, 1084 Columbia Ave, Riverside, 92507, CA, USA
 b. Chemical and Environmental Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, 92507, CA, USA
 c. Metrology Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada
 d. Department of Mechanical Engineering, University of British Columbia. 2054-6250 Applied Science Lane, Vancouver, BC, V6T1Z4, Canada

I-NUF 2019 October 18, 2019

Published/In-prep work:

- Sommer, D. E. et al. Characterization and Reduction of In-Use CH4 Emissions from a Dual Fuel Marine Engine Using Wavelength Modulation Spectroscopy. Environ. Sci. Technol. (2019). doi:10.1021/acs.est.8b04244
- 2. Trivanovic, U. et al. Size and morphology of soot produced by a dual-fuel marine engine. J. Aerosol Sci. (2019). doi:10.1016/j.iaerosci.2019.105448
- 3. Corbin, J. et al. Characterization of particulate matter emitted by a marine engine operated with liquefied natural gas and diesel fuels. Atmos. Environ. (2019). Doi:10.1016/j.atmosenv.2019.117030
- 4. Peng, W. et al. Air Quality Benefits of Switching a Marine Vessel from Diesel Fuel to Natural Gas. (In prep)

A Collaborative Effort

Weihan Peng, Jiacheng (Joey) Yang, Qi Li, Wayne Miller

Stéphanie Gagné, Joel Corbin, Brett Smith, Prem Lobo

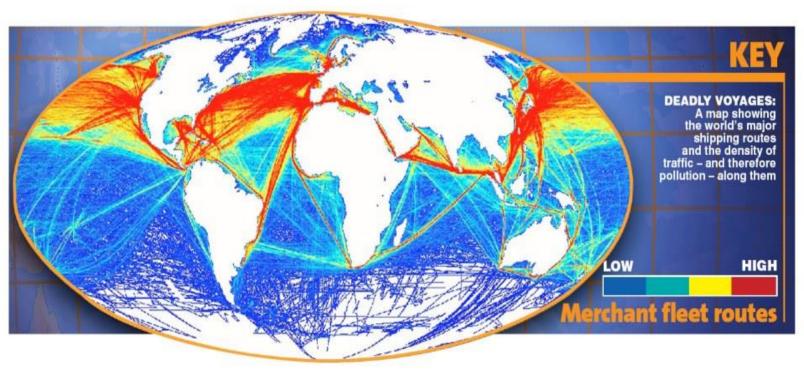
Una Trivanovic, Steve Rogak, David Sommer, Patrick Kirchen

Ship owner and their crew

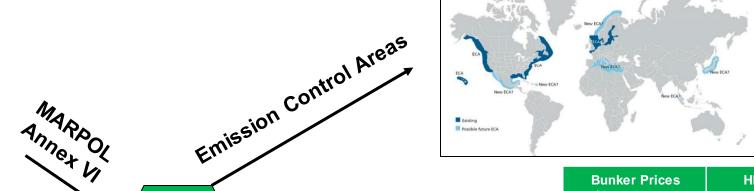
With the financial, logistical and other support from:

Transport Canada Transports Canada

- Transport Canada
- US MARAD
- SCAQMD
- CARB
- Wärtsilä



Background – Global Shipping


- □ Represents 80% of the volume and 70% of the value of international trade¹.
- □ Emissions such as NOx, SOx, PM and BC contributes to air pollution in atmosphere.
- □ Linked with increased mortality in coastal regions, with an estimated 60,000 deaths from cardiopulmonary and lung cancer per year².

^{1.} United Nations Conference on Trade and Development (UNCTAD), Review of Maritime Transport 2015
2. Corbett, J. J., Winebrake, J. J., Green, E. H., Kasibhatla, P., Eyring, V., & Lauer, A. (2007). Mortality from ship emissions: a global assessment. *Environmental science* & technology, 41(24), 8512-8518. https://www.epa.gov/enforcement/marpol-annex-vi

Strategies to Control Marine Emissions

Switch to MGO

Install Control Devices (e.g. Scrubber)

Bunker Prices (\$/metric tons)	HFO	MGO
Global Average	477.00	758.50
Americas Average	470.00	755.00
APAC Average	510.00	794.50
EMEA Average	462.00	720.50

*Information adopted from Ship&Bunker on September

Switch to NG Engine

Decision

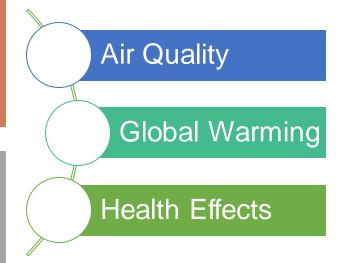
NG: Natural Gas

Analysis Needed when Switching Diesel Fuel to Natural Gas

Particle

- PM_{2.5}
- Black Carbon (BC)
- Organic/Elemental Carbon (OC/EC)

Greenhouse Pollutants:


- CO₂,
- CH₄
- BC

Criteria Gases:

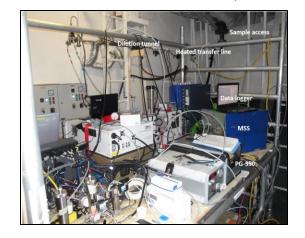
- NO_x
- SO_v
- · CO

Toxics:

- HCHO
- PM

Approach

Ultra-low Sulfur Diesel


Natural Gas (>92% methane)

Engine Information

Parameter	Value
Power	$4320\mathrm{kW}$
Net IMEP	$22\mathrm{bar}$
Bore and stroke	340 and $400\mathrm{mm}$
Displacement	36.3 l/cyl
Speed	720 rpm
Cylinders	9
Intake valves	2
Exhaust valves	2
NG injection	indirect

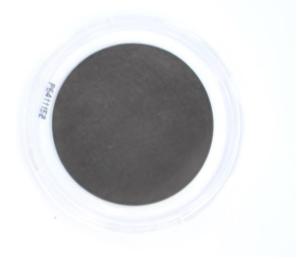
Exhaust stack Smoke Meter: AVL Smoke Meter PG350: Horiba Portable Gas Analyzer Compressed FID: J.U.M. Flame Ion detector Filtered Air MSS: AVL Micro Soot Sensor Smoke **Dilution Tunnel** Meter KO: Water Knock-out Q: Quartz filter Cyclone T: Teflon filter KO PG350 Vent MFC: Mass flow control Q DNPH **FID** CFO: Critical Flow Orifice DNPH: Waters 2,4-MSS CFD MFC MFC Dinitrophenylhydrazine cartridges ⊶► Exhaust Instruments

Experiment Setup Schematics

Corbin et. al. 2019

Summary

PM2.5

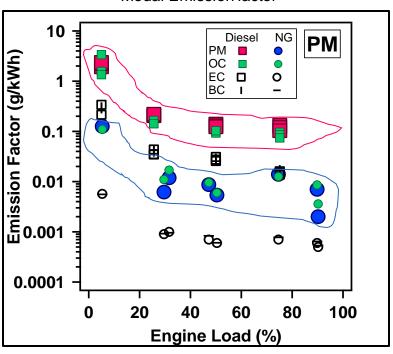

CO2

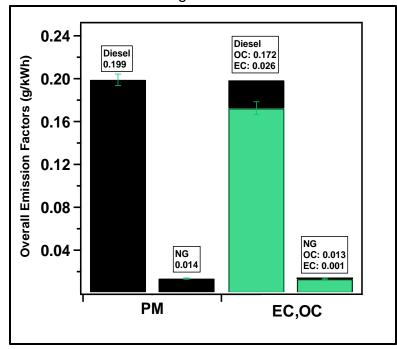
Black Carbon

NOx

NG 50min

Diesel 5min


CH4



Air Quality (Particles)

Overall Weighted Emission factor

- When switching from diesel fuel to NG:
 - Modal emission factors of $PM_{2.5}$ were to >1 order of magnitude lower.
 - PM_{2.5} and BC were reduced by 93% and 97% respectively when switching from diesel fuel to NG.
 - Organic carbon accounts for 87% (diesel) and 93%(NG) of total carbon.

Particle Size Distribution

Corbin et. al. 2019

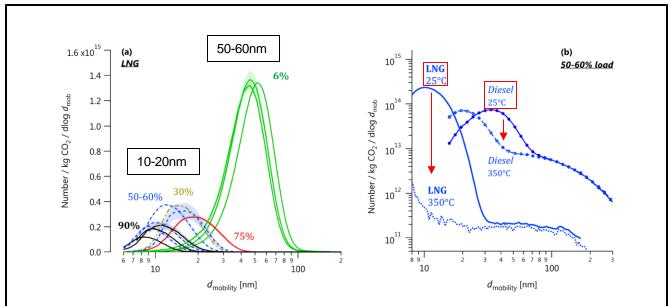
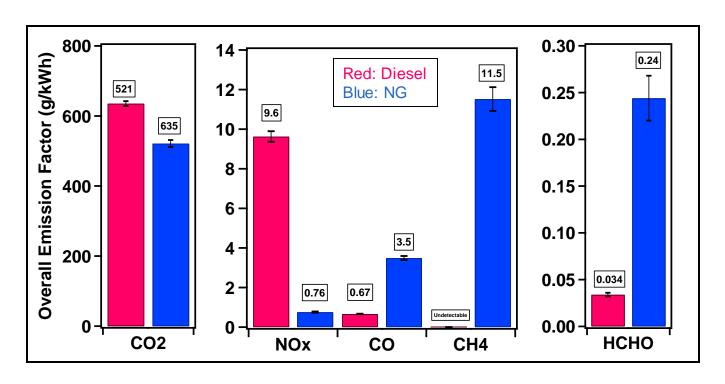
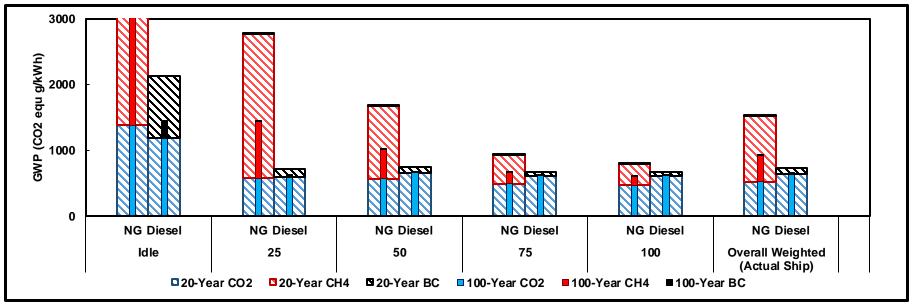



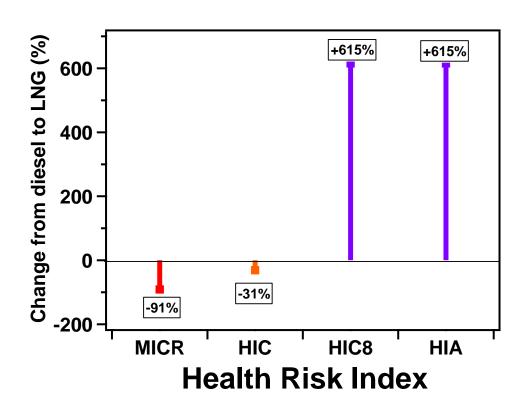
Figure 2: (a) Mobility size distributions as a function of engine load in LNG mode. (b) Mobility size distributions at 50% load for diesel and LNG modes, with and without the removal of volatiles at 623 K by the catalytic stripper. Note that, since (b) shows that the majority of particles in (a) were volatile, the larger sizes observed at 6% load can be understood to indicate that volatile (organic) emissions were higher at 6% load, as discussed in the text. For the same reason, smaller sizes would have been measured at higher dilution ratios. Note also that the mobility diameter of a soot particle is larger than that of an equivalent-volume sphere due to shape effects [44].

- Particles from NG exhaust peak at 10-20 nm at engine load > 30% and 50-60nm at idling.
- At 50-60% engine load, NG particle emissions above 20nm is significantly lower than diesel.
- Particles from NG emissions mainly composes of volatiles.


Air Quality (Gases)

- When switching from diesel fuel to NG:
 - CO₂ and NO_x was reduced by ~20% and 92% respectively.
 - CO and HCHO was increased by >4 and >6 times respectively.
 - CH₄ emission factor was 11.5 g/kWh while no detectable CH₄ was measured from diesel exhaust.

Global Warming Potential


- ✓ Compounds: CO₂, CH₄, BC.
 ✓ Time horizontal: 20-year vs 100-year.
- ✓ Engine load: idle, 25%, 50%, 75%, 100% and overall average
- When switching from diesel fuel to NG:
 - Overall GWP from increase of CH₄ outweighs reduction of CO₂.
 - 100-year GWP of CH₄ and BC decreased by more than 50% compared to
 20-year GWP due to shorter lifetime in atmosphere.
 - At lower engine loads, CH₄ accounts for major fraction of GWP. At >75% engine load, GWP from NG is at similar level with diesel.

Health Risk Assessment

- Maximum Individual Cancer Risk (MICR)
- Non-Carcinogenic
 - Chronic Hazard Index (HIC)
 - 8-Hour Chronic Hazard Index (HIC8)
 - Acute Hazard Index (HIA)

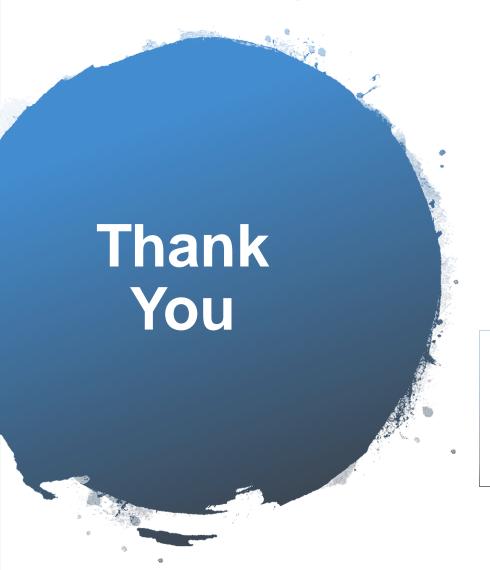
2015 OEHHA Guidelines 2017 SCAQMD Risk Assessment Procedures V 8.1

- When switching from diesel fuel to NG:
 - Cancer risk and chronic health risk (long-term non-carcinogenic) were reduced largely due to PM reductions.
 - Shorter-term health risks in local areas were increased significantly due to HCHO increases. (e.g. 95% remove efficiency)

Mitigation

1. Plugging in Shore-power at idle

2. Cylinder-Deactivation 3. Oxidation Catalyst at exhaust

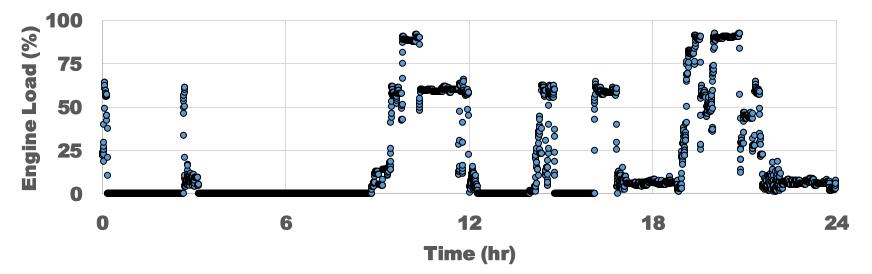

Metric	Index	Actual	Shore Power	Cylinder Deactivation	Oxidation Catalyst
	MICR	-91%	-94%	-91%	-93%
Hazards HIC Risks HIC8 HIA	-31%	-57%	-42%	-91%	
	615%	345%	496%	-64%	
	HIA	615%	345%	496%	-64%
	GWP20	109%	37%	78%	109%
Impacts —	GTP20	96%	33%	69%	96%
	GWP100	38%	4%	25%	38%
	GTP100	-11%	-20%	-13%	-11%

Conclusion

- Switching to NG reduced PM_{2.5}, BC, NOx, CO₂ by 93%, 97%, 92% and 20% respectively, however, increased CO and HCHO by >4 and >6 times and CH₄ emission factors to >11 g/kWh.
- Organic carbon account for 93% of total carbon of NG exhaust particles while 85% for diesel.
- □ The large increase of CH₄ increase GWP from NG but at >75% engine load, 100-year GWP from both NG and diesel are comparable.
- □ The decrease of PM reduced the cancer risk and long-term non-carcinogenic effects but the increase of HCHO increased shorter-term health effects, which can be controlled significantly with proper after-treatment (e.g. oxidation catalyst).

Published/In-prep work:

- Sommer, D. E. et al. Characterization and Reduction of In-Use CH4 Emissions from a Dual Fuel Marine Engine Using Wavelength Modulation Spectroscopy. Environ. Sci. Technol. (2019). doi:10.1021/acs.est.8b04244
- 2. Trivanovic, U. et al. Size and morphology of soot produced by a dual-fuel marine engine. J. Aerosol Sci. (2019). doi:10.1016/j.jaerosci.2019.105448
- Corbin, J. et al. Characterization of particulate matter emitted by a marine engine operated with liquefied natural gas and diesel fuels. Atmos. Environ. (2019). Doi:10.1016/j.atmosenv.2019.117030
- 4. Peng, W. et al. Air Quality Benefits of Switching a Marine Vessel from Diesel Fuel to Natural Gas. (In prep)



SCAN ME

a	Engine Load				
	Idle	25%	50%	75%	100%
Actual Vessel Cycle	0.32	0.09	0.06	0.31	0.22
Standard E2 Cycle	0.00	0.15	0.15	0.50	0.20

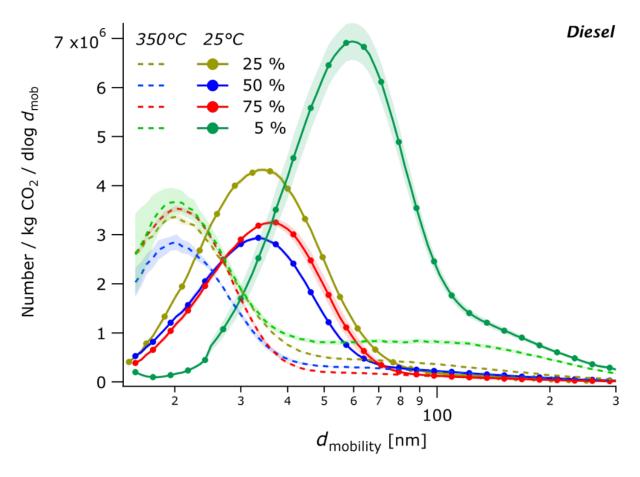


Figure S6: Mean mobility-size number distributions for diesel combustion as a function of engine load. Solid lines show sixfold-diluted samples, dashed lines show samples denuded at 623 K. Shading shows standard error of the mean.

REL

8-hr

ug/m3

9.00

0.00

Acute

ug/m3

5.50

0.00

Chronic

ug/m3

9.00

5.00

Health Risk Assessment

MICR = Cancer Potency (CP) x Dose (D) $\times 10^{-6}$

Where:

Dose = Concentration x Exposure

Concentration = GLC = $(Q_{tpy} \times \chi/Q) \times MWAF$

 $CEF_R = (Exposure_{0.25-0} + Exposure_{0-2} + Exposure_{2-16} + Exposure_{16-30}) \times EF_R / AT$

ExposureAgeBin = DBRAgeBin x EDAgeBin x ASFAgeBin x FAH AgeBin

Exposure $R = CEF_R \times MP_R$

 $CEF_W = DBR_W \times ED_W \times EF_W / AT$

Exposure $w = CEF_W \times MP_W \times WAF$

	MICR	HIA	HIC8	HIC
LNG	4355.14	7.78	4.76	5.76
Diesel	133077.69	3.17	1.94	37.59
Difference	-0.97	1.46	1.46	-0.85

Cancer

Potency

(mg/kg-d)^-1

0.02

1.10

Parameters

Compounds

Formaldehyde

PM from diesel

$$\begin{split} \text{Total HIC}_{\text{target organ}} = \{ [Q_{\text{tpy},\text{TAC1}} \ x \ (\chi/Q) \ x \ MP_{\text{TAC1}} \ x \ MWAF] / \text{Chronic REL}_{\text{TAC1}} \}_{\text{target organ}} + \\ \{ [Q_{\text{tpy},\text{TAC2}} \ x \ (\chi/Q) \ x \ MP_{\text{TAC2}} \ x \ MWAF] / \text{Chronic REL}_{\text{TAC2}} \}_{\text{target organ}} + \ \dots \end{split}$$

$$\begin{aligned} \text{Total HIC8}_{\text{ target organ}} &= \{ [Q_{\text{tpy},\text{TAC1}} \ x \ (\chi/Q) \ x \ \text{WAF} \ x \ \text{MWAF}] / \text{8-Hour REL}_{\text{TAC1}} \}_{\text{target organ}} \ + \\ &\quad \{ [Q_{\text{tpy},\text{TAC1}} \ x \ (\chi/Q) \ x \ \text{WAF} \ x \ \text{MWAF}] / \text{8-Hour REL}_{\text{TAC2}} \}_{\text{target organ}} \ + \ \dots \end{aligned}$$

$$\begin{split} \text{Total HIA}_{\text{ target organ}} = \{ [Q_{\text{lbph},\text{TAC1}} \times (\chi/Q)_{\text{hr}} \times \text{MWAF}] / \text{Acute REL}_{\text{TAC1}} \}_{\text{target organ}} + \\ \{ [Q_{\text{lbph},\text{TAC2}} \times (\chi/Q)_{\text{hr}} \times \text{MWAF}] / \text{Acute REL}_{\text{TAC2}} \}_{\text{target organ}} + \dots ... \end{split}$$