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Background — Global Shipping

0 Represents 80% of the volume and 70% of the value of international tradel.

0 Emissions such as NOx, SOx, PM and BC contributes to air pollution in
atmosphere.

o Linked with increased mortality in coastal regions, with an estimated 60,000
deaths from cardiopulmonary and lung cancer per year?.

1. United Nations Conference on Trade and Development (UNCTAD), Review of Maritime Transport 2015
2. Corbett, J. J., Winebrake, J. J., Green, E. H., Kasibhatla, P., Eyring, V., & Lauer, A. (2007). Mortality from ship emissions: a global
assessment. Enwronmental suence&technology 41(24), 8512-8518. https://www.epa.gov/enforcement/marpol-annex-vi

*Figure is obtained from www.marinetraffic.com.

DEADLY VOYAGES:
A map showing

the world's major
shipping routes

and the density of
traffic - and therefore
pollution - along them
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Bunker Prices HFO MGO
($/metric tons)

. Global Average 477.00 758.50
Switch to MGO

» Americas Average 470.00 755.00

APAC Average 510.00 794.50

EMEA Average 462.00 720.50

*Information adopted from Ship&Bunker on September
gth, 2018

Switch to]NG Engine

NG: Natural Gas \




Analysis Needed when Switching Diesel
Fuel to Natural Gas

Particle Criteria Gases:

* PM;5 * NO, : .
« Black Carbon (BC) * SO Alr Qua“ty

* Organic/Elemental « CO
Carbon (OC/EC)

Global Warming

Greenhouse Toxics:
Pollutants: « HCHO

. PM Health Effects

Y COz,
Y CH4
- BC




Ultra-low Sulfur
Diesel

Natural Gas

(>92% methane)

Engine Information

Approach
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IPG350| T: Teflon filter
MFC: Mass flow control
FID CFO: Critical Flow Orifice

DNPH: Waters 2,4-

Exhaust L _________________ J
Instruments

MSS

Dinitrophenylhydrazine cartridges

A\

Parameter Value
Power 4320kW
Net IMEP 22 bar
Bore and stroke 340 and 400 mm
Displacement  36.3 1/cyl
Speed 720 rpm
Cylinders 9
Intake valves 2
Exhaust valves 2
NG injection indirect
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Air Quality (Particles)
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* When switching from diesel fuel to NG:

* Modal emission factors of PM, 5 were to >1 order of magnitude lower.
« PM,; and BC were reduced by 93% and 97% respectively when switching

from diesel fuel to NG.

» Organic carbon accounts for 87% (diesel) and 93%(NG) of total carbon.




Particle Size Distribution

Corbin et. al. 2019

15

16x10

14 -
2

g 124
o
g

S 1.0
Z

S o8-
2
~

5 0.6 —
s
£

2 04

0.2

00

(a) 50-60nm

10-20nm

@ rvobility (MM]

6%

Number / kg CO, / dlog d,,;,

Figure 2: (a) Mobility size distributions as a function of engine load in LNG
for diesel and LNG modes, with and without the removal of volatiles at 623 K by the catalytic stripper.
shows that the majority of particles in (a) were volatile, the larger sizes observed at 6% load can be understood to indicate
that volatile (organic) emissions were higher at 6% load, as discussed in the text. For the same reason, smaller sizes would
have been measured at higher dilution ratios. Note also that the mobility diameter of a soot particle is larger than that of an
equivalent-volume sphere due to shape effects [44].
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» Particles from NG exhaust peak at 10-20 nm at engine load > 30% and 50-60nm at

idling.

* At 50-60% engine load, NG particle emissions above 20nm is significantly lower than

diesel.

» Particles from NG emissions mainly composes of volatiles.



Air Quality (Gases)
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When switching from diesel fuel to NG:
CO, and NO, was reduced by ~20% and 92% respectively.
CO and HCHO was increased by >4 and >6 times respectively.

CH, emission factor was 11.5 g/kWh while no detectable CH, was measured

from diesel exhaust.
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* When switching from diesel fuel to NG:

Overall GWP from increase of CH, outweighs reduction of CO..
100-year GWP of CH, and BC decreased by more than 50% compared to
20-year GWP due to shorter lifetime in atmosphere.

At lower engine loads, CH, accounts for major fraction of GWP. At >75%
engine load, GWP from NG is at similar level with diesel.

11
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Health Risk Assessment

> Maximum Individual
Cancer Risk (MICR)

> Non-Carcinogenic
Chronic Hazard Index (HIC)

8-Hour Chronic Hazard
Index (HIC8)

Acute Hazard Index (HIA)
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2015 OEHHA Guidelines 04 5
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Health Risk Index

* When switching from diesel fuel to NG:
« Cancer risk and chronic health risk (long-term non-carcinogenic) were
reduced largely due to PM reductions.
« Shorter-term health risks in local areas were increased significantly due

to HCHO increases. (e.g. 95% remove efficiency)
12



Mitigation

1. Plugging B 5 cyiinder-

Deactivation

In Shore-
power at idle

Metric | Index Actual | IO | ectivation | Catalyst.
MICR -91% -94% -91% -93%
Hazards HIC 31% -57% -42% 91%
Risks HICS 615% 345% 496% -64%
HIA 615% 345% 496% -64%
. GWP20 109% '( 37% 78% T09%
E:l‘;';iﬁ GTP20 96% 33% 69% 96%
GWP100 38% 4% 25% 38%
GTP100 1% H -20% -13% 11%
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UCR

Conclusion

Switching to NG reduced PM, s, BC, NOx, CO, by 93%, 97%,
92% and 20% respectively, however, increased CO and
HCHO by >4 and >6 times and CH,emission factors to >11
g/kWh.

Organic carbon account for 93% of total carbon of NG
exhaust particles while 85% for diesel.

The large increase of CH, increase GWP from NG but at
>75% engine load, 100-year GWP from both NG and diesel
are comparable.

The decrease of PM reduced the cancer risk and long-term
non-carcinogenic effects but the increase of HCHO increased
shorter-term health effects, which can be controlled
significantly with proper after-treatment (e.g. oxidation
catalyst).
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Figure S6: Mean mobility-size number distributions for diesel combustion as a function of engine load. Solid lines show sixfold-
diluted samples, dashed lines show samples denuded at 623 K. Shading shows standard error of the mean.



Health Risk Assessment

MICR = Cancer Potency (CP) x Dose (D) x 10°

Where:
Dose = Concentration x Exposure
Concentration = GLC = (Qgy x ¥/Q) x MWAF

CEFr = (Exposureo:so + Exposureo: + Exposure:1s + Exposureisso) X EFr /AT
Exposuresgesin = DBRuageBin X EDageBin X ASFageBin X FAH AgeBin

Exposure g = CEFr x MPr
CEFw = DBRw x EDw x EFw /AT
Exposure w = CEFw x MPw x WAF

Cancer REL
Parameters Potency Acute 8-hr | Chronic
Compounds |(mg/kg-d)*-1] ug/m3 | ug/m3 | ug/m3
Formaldehyde 0.02 5.50 9.00 9.00
PMfrom diesel 1.10 0.00 0.00 5.00
MICR HIA HIC8 HIC
LNG 4355.14 7.78 4.76 5.76
Diesel 133077.69 3.17 1.94 37.59
Difference -0.97 1.46 1.46 -0.85

Total HIC target organ = {[Qupy.roc; X (1/Q) x MP_, ., x MWAF]/Chronic REL, . } target organ +

{[Qwy.racs X (1/Q) X MP_, ., X MWAF]/Chronic RELTac2} tasget organ + .-

Total HICS target organ = {[Qipy.pac; X (1/Q) X WAF x MWAF]/8-Hour REL1Act Jtarget organ +
[Qipyrac; X (1/Q) x WAF x MWAF]/8-Hour RELTAC? }target organ + ...

Total HIA target organ = {[Qibphracy X (1/Q)y; x MWAF)/Acute REL ., - }target organ +
{[Quophipper X (1/Q),, X MWAF)/Acute REL, . }target organ + ---..

2015 OEHHA Guidelines
2017 SCAQMD Risk Assessment Procedures V 8.1




