The Operational Strategy of Alternative Maritime Power at YGPA's container port in South Korea

HYOWON KANG*, JAMES A. FAWCETT**

18th OCT. 2019

*Andong National University, Gyeongbuk, SOUTH KOREA

* * University of Sothern California, SEAGRANT PROGRAM

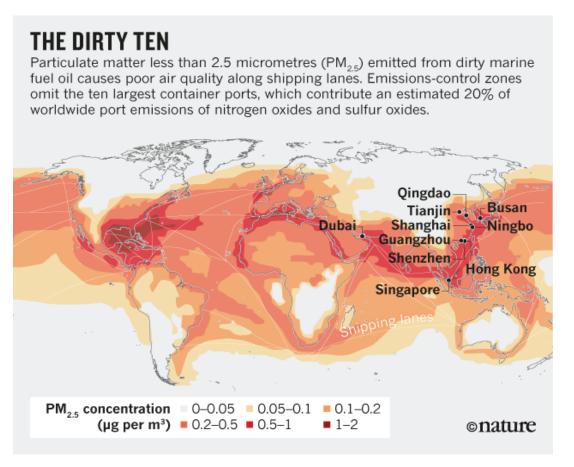
Contents

I. Motivation

II. Literature Reviews

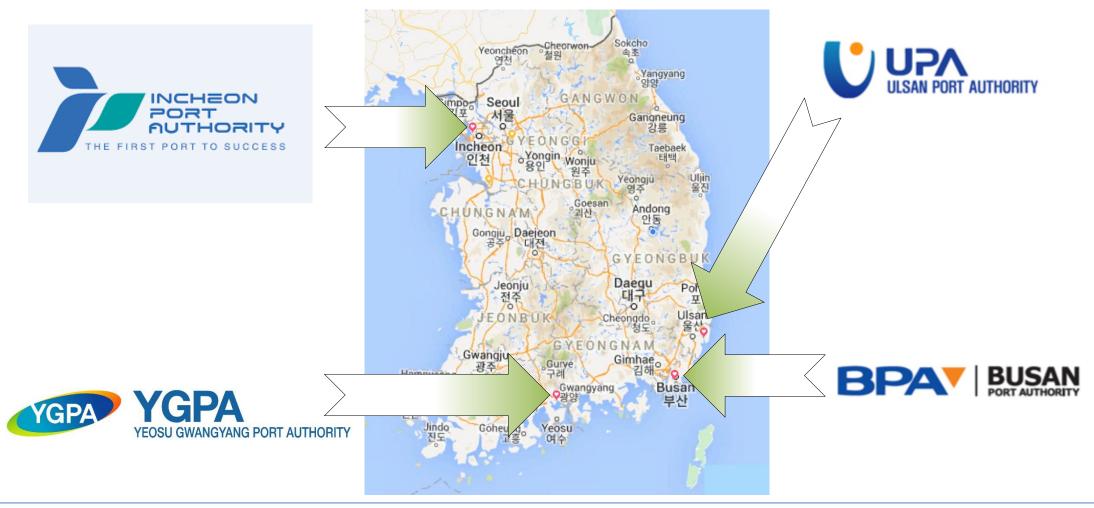
III. Operational Strategy

IV. Results


V. Conclusion

1) Background

❖ Nature(2016) estimate that these ten ports contribute 20% of port emissions worldwide.


Source: JTBC Newsroom (Jun-5, 2018)

Source:

https://www.nature.com/news/pollution-three-steps-to-a-green-shipping-industry-1.19369#/ten (Apr-19, 2016)

- 2) Challenging New Environmental Protection Measure in Korea
- ❖ In an effort to reduce air pollution, the S. Korea 4 port authorities (Busan, Incheon, Ulsan and Yeosu Gwangyang) are set to install AMP. (Ship & Bunker, 2017)

3) Emerging New electric vessels

- ❖ Nicknamed the "Tesla ship", the emission-free boats are the latest offerings in a fleet of new electric vessel in Europe.
- Company : Port-Liner (Dutch Company)
- * Barges spec.
- all-electric barges
- 52 metres(Length) and 6.7m(Width)
- to carry 280 containers
- to serve 17 inland terminals in the Northwest Europe region.

Source: https://www.dw.com/en/are-electric-vessels-the-wave-of-the-future-in-shipping/a-43046309

2) Objectives

- ❖ Meanwhile, ports are in competition with one another, especially in Northeast Asia.
- ❖ Deutsche Welle(2018) said, "These intense competition makes them resistant to press ahead with green port schemes.
- ❖ Nonetheless, South Korea's government (MOF) has been enacting rules and measures such as ECA(Emission Control Area), AMP(Alternative Maritime Power).
- * Research Question 1
- How are AMP facilities operated in YGPA's container port?
- Research Question 2
- What is AMP operational performance?

II. Literature Review

1. Chen et. al. (2019), Alternative Maritime Power application as a green port strategy: Barriers in China

Ships using power generators when hoteling can cause serious air pollution and thus pose a threat to port community.

2. LAHD (2016), San Pedro Waterfront Project EIS/EIR

- ❖ When in port, ships burns marine diesel in on-board generators to produce electricity.
- Those activities are significant contributors to poor local and regional air quality.
- ❖ 100% tugboats shall use AMP while hoteling at the LA Port since 2014.

3. Cannon (2008), U.S. Container Ports and Air Pollution: A Perfect Storm

- ❖ More than 10,000 visits to ports in the U.S from around the world each.
- ❖ Burning diesel fuel releases health threatening toxic air contaminants, smog forming air pollutions, and climate changing greenhouse gases.

III. Operational Strategy

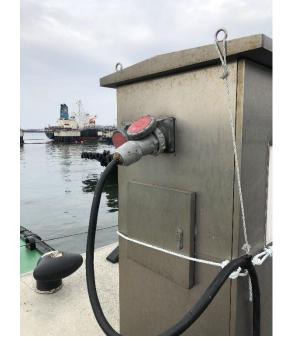
1. Yeosu-Gwangyang Port Authority(YGPA) Facilities

Port of Yeosu

Port of Gwangyang

Source: Google map (http://maps.google.com)

III. Operational Strategy


2. AMP for Tugboat

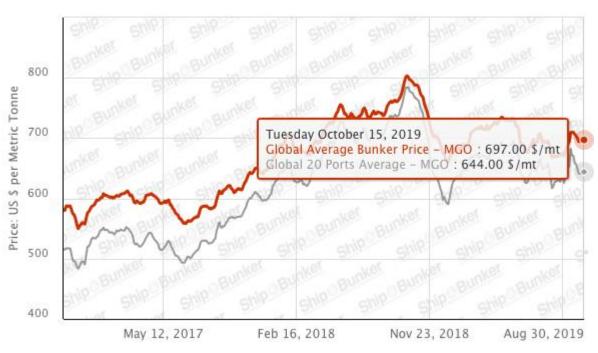
- ❖ In S. Korea's ports have been operating low voltage AMP for tugboats.
- 51 tugboats
- 56 panel board

Power Outlet *On board*

Panel Board **Shore side**

Ship to Ship connection **Berth**

IV. Results


1. Economic Value

- ❖ Basically, the electric rate is stable than the bunker price. Whereas, the oil price is highly volatile.
- ❖ The former is related to AMP cost and the latter is linked with MGO.
- Economic Value (4yrs)
 - Total AMP \$447K vs. Total MGO \$2.6M
 - Shipowners's savings : about \$2.1M

Cost (US\$)	2016	2017	2018	2019*
AMP** (A)	87,756.02	112,127.96	144,402.78	102,881.18
MGO*** (B)	370,283.38	507,043.21	712,905.51	1,044,801.17
Economic Value (B-A)	282,527.36	394,915.25	568,502.74	941,919.99

^{*: 2019} Present

Source: YGPA, Ship & Bunker (http://www.shipandbunker.com)

Source: Ship & Bunker (http://www.shipandbunker.com)

^{**:} Invoice amount

^{*** :} Estimation [Avg. MGO consumption(ton/day) x total tugboats x 365 days x Global 20 ports Avg. MGO price (ton)]

IV. Results

2. Social Value

- ❖ It is linked to pollutants. (such as O₃, CO, NO₂, SO₂, PM_{2.5}, PM₁₀)
- Social Value (4yrs)
 - Total carbon emission 2,032 ton from AMP but MGO is 9,146 ton. AMP emits less carbon than MGO: 7,114 ton
 - Decreasing noise and oscillation when the tugboats hotel at the berth. Increasing welfare for seaman.

Carbon emission (ton)	2016	2017	2018	2019*
AMP** (A)	360.8	526.6	651.8	493.0
MGO*** (B)	1,662.9	1,995.5	2,494.4	2,993.3
Social Value (B-A)	1,302.2	1,468.9	1,842.6	2,500.2

^{*: 2019} Present

Source: YGPA

Source: Google Images

^{**:} Invoice amount

^{*** :} Estimation [Avg. carbon emission(ton) x Avg. MGO consumption(ton) x 365 days]

V. Conclusion

- ❖ Though it makes an additional investment between terminal operators and shipping companies, in various efforts to reduce air pollutants nearby port community are getting more important.
- ❖ Inter alia, AMP facility is one of proper alternatives.
- * the S. Korea 4 port authorities had been operating AMP for tugboats only.
- The benefits of the operating AMP generated a huge economic and social value.
- ❖ For 4yrs, the economic value of tugboat's ship-owners is \$2.2M.
- Ship-owners can expect their expenditure for the electrical fare, they also can escape the volatile of MGO price.
- ❖ In the social value, after the introduction of AMP, tugboats reduced the carbon exhaust 7.1K ton for 4yrs.
 - In addition to, the stress of seaman was improved whereas they await at the berth for a few hours.
- Thus, the invests for protecting environment bring about the economic performance and the social benefits.

References

- Chen et. al. (2019), Alternative Maritime Power application as a green port strategy: Barriers in China, Journal of Cleaner Production, Vol. 213, pp.825-837
- Hyowon Kang, James A. Fawcett (2017), The Hotelling Challenge: Finance Meets Environmental Quality, 2017 7th
 I-NUF Conference
- Nature (2016), Pollution: Three steps to a green shipping industry, https://www.nature.com/news/pollution-three-steps-to-a-green-shipping-industry-1.19369
- Deutsche Welle (2018), Are electric vessels the wave of the future in shipping? https://www.dw.com/en/are-electric-vessels-the-wave-of-the-future-in-shipping/a-43046309
- Ship & Bunker (2017), https://shipandbunker.com/news/apac/693562-port-of-busan-moves-to-establish-eca
- Port of LA (2013), High Voltage Shore Connection (HVSC) Systems Guidelines
- OIES (2018), A review of demand prospects for LNG as a marine transport fue
- Port of LB (2008), Pier T Berth T121 BP Cold Ironing Project For Alaska Class Tankers

THANK YOU FOR YOUR ATTENTION

Contact info.
hwkangg@anu.ac.kr
fawcett@usc.edu