Express Package Delivery Optimization Using On-Foot Personnel, Cargo Tricycles and Delivery Trucks
A Case Study for Downtown Toronto

Patrick Meredith-Karam, Jeffrey Jiang, Sina Bahrami, Matthew Roorda
Presentation: I-NUF Conference, October 17, 2019
The Authors

Patrick Meredith-Karam
Dual M.S. Candidate, MIT

Jeffrey Jiang
J.D. Candidate, WUSTL

Sina Bahrami, PhD
Postdoctoral Fellow, University of Toronto

Prof. Matthew Roorda
Professor, University of Toronto
Agenda

1. Introduction
2. Research Context
3. Methods
4. Results
5. Discussion
6. Conclusion
1.1 Introduction

- Vehicle Routing: an industry-wide challenge

- Urban delivery modes
 - Existing: walk, van
 - Emerging: cargo bicycles

- Idea: Viability of Cargo Bicycles

Figure 1. Cargo bicycle and delivery van (Yokler, 2019)
1.1 Introduction

IMPLEMENTATION IN THEORY

- Vehicle Routing Problem with Multiple Vehicle Types and Time Windows (VRPMVTTW)
1.1 Introduction

THIS PROJECT

- Development of a VRPMVTTTW heuristic solver
- Application to Toronto Case Study
2.0 Research Context

- The Vehicle Routing Problem
- VRPMVTTTW
- Cargo Bike Technologies
2.1 Research Context

THE VEHICLE ROUTING PROBLEM

Figure 2. Graphical Representation of the Vehicle Routing Problem (NEO, 2018)
2.1 Research Context

THE VEHICLE ROUTING PROBLEM

Figure 3. Historical progression of vehicle routing research (Kim et al., 2015)
2.2 Research Context

VRPMVTTW

- **Ferland & Michelon (1988)**
 - Formulate and define the problem
 - Propose three heuristic methods:
 1. Discrete approximation of time windows
 2. Iterative generation and improvement upon feasible solutions
 3. Division of problem into subsets

- **Liu & Shen (1999)**
 - Comparison of heuristic method performance
 - Proposed Heuristic:
 • Sequential insertion of demand points into trip chains
2.3 Research Context

CARGO BIKE TECHNOLOGIES

- Address last-mile challenges
- Suitable for downtown operation
- Applicable when depot is close to demand

Figure 4. Cargo bicycle from The Drop Distribution in Toronto (The Drop, 2019)
3.0 Methods

- Selection of VRPMVTTW Heuristic
- VRPMVTTW Solver Implementation
- Problem Formulation
- Case Study Application
3.1 Methods

SELECTION OF VRPMVTTW HEURISTIC

- Basis: Liu & Shen (1999)
- Modifications:
 - Waiting costs
 - Service time costs
 - Consideration of all modes
 - Revised time window and service time feasibility constraints
3.3 Methods

VRPMVTW SOLVER IMPLEMENTATION

- Identify depot and demand points
3.3 Methods

VRPMVTTW SOLVER IMPLEMENTATION

- Initiate all routes \([0, i, 0]\) with smallest feasible vehicle
3.3 Methods

VRPMVTTW SOLVER IMPLEMENTATION

- **Route Insertion:**
 - Feasibility check and savings calculation (for all potential combinations)

\[\text{Savings}(R^A, R^B, R^E) \]
3.3 Methods
VRPMVTTW SOLVER IMPLEMENTATION

- Savings Calculation:
- Consider travel cost, upfront cost, departure times, value of excess capacity
3.3 Methods

VRPMVTW SOLVER IMPLEMENTATION

- Savings Calculation:
- Consider travel cost, upfront cost, departure times, value of excess capacity

\[\text{Savings}(R^A, R^B, R^G) \]
3.3 Methods

VRPMVTTW SOLVER IMPLEMENTATION

▪ Route Insertion:

– According to maximum savings combination

\[\text{Savings}(R^A, R^B, R^E) \]
3.1 Methods

PROBLEM FORMULATION: OBJECTIVE

- Adapted from Munari, Dollevoet, Spillet (2017)
- Demand points numerated i, j
- Vehicle types numerated k
- Costs: C_{ij}^k, W^k, S^k, F^k
- Wait time: w^k
- Nodes serviced by vehicle type k: c^k
- Vehicles of type k: u^k
3.2 Methods

PROBLEM FORMULATION: OBJECTIVE

\[
\min \sum_{k=1}^{K} \left(\sum_{(i,j) \in \mathcal{E}} (C_{ij}^k x_{ij}^k) + W^k \sum_{i=1}^{n} w_i^k + S^k c^k + F^k u^k \right)
\]

- Adapted from Munari, Dollevoet, Spillet (2017)
- Demand points numerated \(i, j\)
- Vehicle types numerated \(k\)
- Costs: \(C_{ij}^k, W^k, S^k, F^k\)
- Wait time: \(w^k\)
- Nodes serviced by vehicle type \(k\): \(c^k\)
- Vehicles of type \(k\): \(u^k\)
3.2 Methods

PROBLEM FORMULATION: CONSTRAINTS

• Each customer serviced once
• Flow of vehicles internally consistent
• Capacity constraints
• Time window constraint
3.2 Methods

SAVINGS FUNCTION

- Consider: travel cost, upfront cost, departure times, value of excess capacity
- Function Parameters: α and β
 - α: trade off between cost savings and departure time
 - β: preference for sequential construction
3.4 Methods

CASE STUDY APPLICATION

- Application to downtown Toronto express courier operations
- Last mile delivery operations
3.4 Methods

CASE STUDY: VEHICLE CHARACTERISTICS

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Avg. Speed (km/h)</th>
<th>Volume Capacity (m³)</th>
<th>Operating Cost ($/min)</th>
<th>Waiting/Service Cost ($/min)</th>
<th>Service Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery Van</td>
<td>24.0 km/h</td>
<td>6.787 m³</td>
<td>$1.129</td>
<td>$1.017</td>
<td>4.16 min</td>
</tr>
<tr>
<td>Cargo Bike</td>
<td>17.7 km/h</td>
<td>2.000 m³</td>
<td>$0.720</td>
<td>$0.720</td>
<td>3.33 min</td>
</tr>
<tr>
<td>Walking</td>
<td>5.0 km/h</td>
<td>0.085 m³</td>
<td>$0.635</td>
<td>$0.635</td>
<td>2.75 min</td>
</tr>
</tbody>
</table>

Figure 5. Case study vehicle characteristics
3.4 Methods

CASE STUDY: DEMAND DISTRIBUTION

Figure 6. Distribution of demand points in downtown Toronto
4.0 Results

- Overall Findings
- VRPMVTTW Sample Output
- Grid Search Results
1.1 Introduction

- Expected Result: service areas
1.1 Introduction

- Actual Result: dominant mode in urban context
4.1 Results

VRPMVTTW SAMPLE OUTPUT

![Routes in Transformed Coordinate System]

<table>
<thead>
<tr>
<th>Route</th>
<th>Vehicle</th>
<th>Total Travel Time (min)</th>
<th>Cost per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 68, 65, 40, 58, 0]</td>
<td>Bike</td>
<td>85.6</td>
<td>$24.09</td>
</tr>
<tr>
<td>[0, 47, 75, 84, 12, 0]</td>
<td>Bike</td>
<td>69.8</td>
<td>$20.14</td>
</tr>
<tr>
<td>[0, 53, 77, 18, 63, 11, 0]</td>
<td>Bike</td>
<td>87.3</td>
<td>$24.50</td>
</tr>
</tbody>
</table>

Figure 7. Top: Sample plot of five routes generated; Bottom: Sample solver output
4.2 Results

GRID SEARCH RESULTS

- $\alpha = 1.00 \rightarrow$ prefer route savings over avoiding pushing back departure times

- $\beta > 1.00 \rightarrow$ prefer sequential construction

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>1344</td>
<td>1344</td>
<td>1479</td>
<td>1345</td>
</tr>
<tr>
<td>0.50</td>
<td>0.50</td>
<td>589</td>
<td>589</td>
<td>589</td>
<td>589</td>
</tr>
<tr>
<td>0.75</td>
<td>0.75</td>
<td>480</td>
<td>480</td>
<td>478</td>
<td>478</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>464</td>
<td>461</td>
<td>456</td>
<td>456</td>
</tr>
</tbody>
</table>

Figure 8. Parameter grid search results
5.0 Discussion

- Sensitivity Analysis
- Cargo Bicycle Effectiveness
- Limitations
5.1 Discussion

SENSITIVITY ANALYSIS: BIKE CAPACITY

Figure 9. Sensitivity analysis results, altering bike capacity
5.1 Discussion

SENSITIVITY ANALYSIS: BIKE UNIT COST

Figure 10. Sensitivity analysis results, altering bike unit cost
5.1 Discussion

SENSITIVITY ANALYSIS: BIKE SPEED

Figure 11. Sensitivity analysis results, altering bike speed
5.1 Discussion

SENSITIVITY ANALYSIS: VAN UNIT COST

Figure 12. Sensitivity analysis results, altering van unit cost
5.2 Discussion

EFFECTIVENESS OF CARGO BICYCLES

- Most cost-effective mode
- Justifies potential for downtown operations
- Out-perform walking trips in capacity and speed, with marginal cost increases
5.3 Discussion

SOLVER LIMITATIONS

- Restricted to downtown area, with depot downtown (no stem time)
- Deterministic travel times (no reliability representation)
- No minimum delivery staff shift length
- Does not consider a fixed/constrained fleet
- $O(n^3)$ Complexity, limited set of demand data
6.1 Conclusion

- Built upon previous methods for the VRPMVTTW
- Identify cargo bicycles as a promising option for downtown freight delivery
Acknowledgements

- Jeffrey Jiang
- Sina Bahrami, Matthew Roorda
- University of Toronto:
 - Onkar Chander
 - Mehdi Nourinejad
 - Mahyar Jahangiriesmaili
 - Puyuan Deng
Thank You!
References

- **The Drop, About Us; 2019.**
- **NEO: Networking and Emerging Optimization, Vehicle Routing Problem; 2018.**
- **Yokler,** *The electric cargo bike, expert in environmentally-friendly delivery in that last mile; 2019.*
- **OpenStreetMap, Map of downtown Toronto; 2019.*
Savings Functions

VRPMVTTW SOLVER IMPLEMENTATION

- Modified Combined Savings

\[
MCS(R^I, R^{II}, R^{III}) = \alpha(T^I + T^{II} - T^{III}) - (1 - \alpha) \left(\frac{D_j^{III} - D_j^I}{c_{us}^{II}} \right) + V^I + V^{II} - V^{III}
\]

- Modified Optimistic Opportunity Savings

\[
MOOS(R^I, R^{II}, R^{III}) = MCS(R^I, R^{II}, R^{III}) + f(K^{III} - q^{II} - q^I)
\]

- Savings Function

\[
SAVINGS = MOOS(R^I, R^{II}, R^{III}) + (W^I w^I + W^{II} w^{II} - W^{III} w^{III}) \\
+ (S^I N^I + S^{II} N^{II} - S^{III} N^{III})
\]