Express Package Delivery Optimization Using On-Foot Personnel, Cargo Tricycles and Delivery Trucks

A Case Study for Downtown Toronto

Patrick Meredith-Karam, Jeffrey Jiang, Sina Bahrami, Matthew Roorda

Presentation: I-NUF Conference, October 17, 2019

The Authors

Patrick Meredith-Karam
Dual M.S. Candidate, MIT

Sina Bahrami, PhDPostdoctoral Fellow, University of Toronto

Jeffrey Jiang *J.D. Candidate, WUSTL*

Prof. Matthew RoordaProfessor, University of Toronto

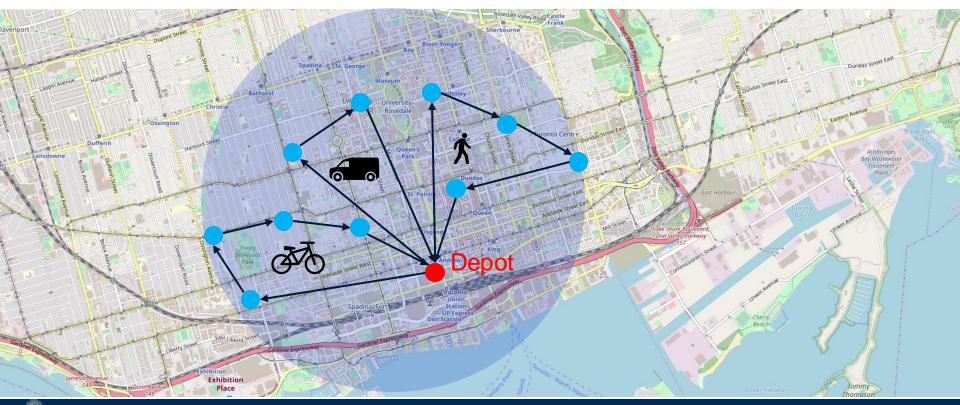
Agenda

- 1. Introduction
- 2. Research Context
- 3. Methods
- 4. Results
- 5. Discussion
- 6. Conclusion

1.1 Introduction

- Vehicle Routing: an industry-wide challenge
- Urban delivery modes
 - Existing: walk, van
 - Emerging: cargo bicycles
- Idea: Viability of Cargo Bicycles

Figure 1. Cargo bicycle and delivery van (Yokler, 2019)


1.1 Introduction IMPLEMENTATION IN THEORY

Vehicle Routing Problem with Multiple
 Vehicle Types and Time Windows
 (VRPMVTTW)

1.1 Introduction THIS PROJECT

- Development of a VRPMVTTW heuristic solver
- Application to Toronto Case Study

2.0 Research Context

- The Vehicle Routing Problem
- VRPMVTTW
- Cargo Bike Technologies

2.1 Research Context THE VEHICLE ROUTING PROBLEM

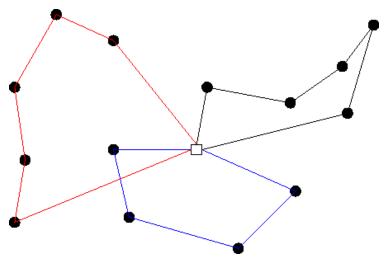


Figure 2. Graphical Representation of the Vehicle Routing Problem (NEO, 2018)

2.1 Research Context THE VEHICLE ROUTING PROBLEM

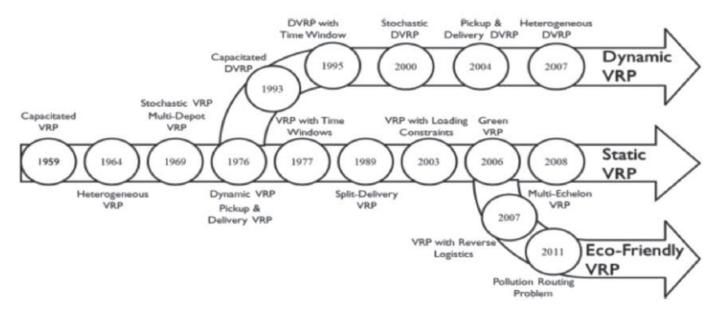


Figure 3. Historical progression of vehicle routing research (Kim et al., 2015)

2.2 Research Context **VRPMVTTW**

Ferland & Michelon (1988)

- Formulate and define the problem
- Propose three heuristic methods:
 - 1. Discrete approximation of time windows
 - 2. Iterative generation and improvement upon feasible solutions
 - 3. Division of problem into subsets

Liu & Shen (1999)

- Comparison of heuristic method performance
- Proposed Heuristic:
 - Sequential insertion of demand points into trip chains

2.3 Research Context CARGO BIKE TECHNOLOGIES

- Address last-mile challenges
- Suitable for downtown operation
- Applicable when depot is close to demand

Figure 4. Cargo bicycle from The Drop Distribution in Toronto (The Drop, 2019)

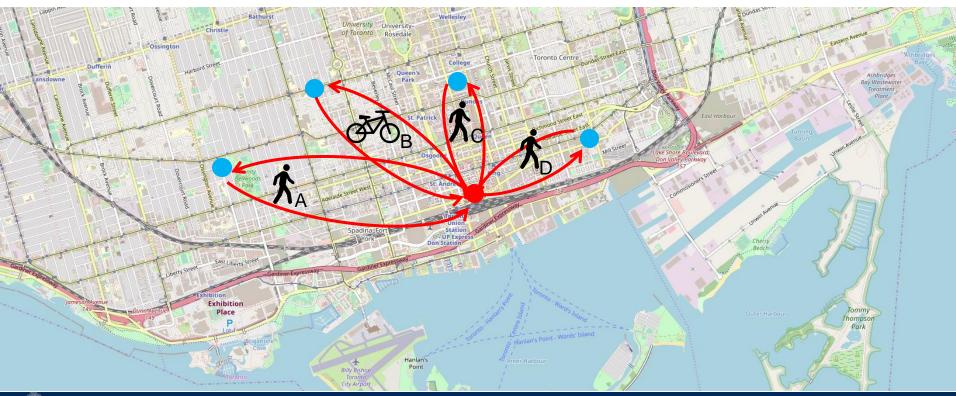
3.0 Methods

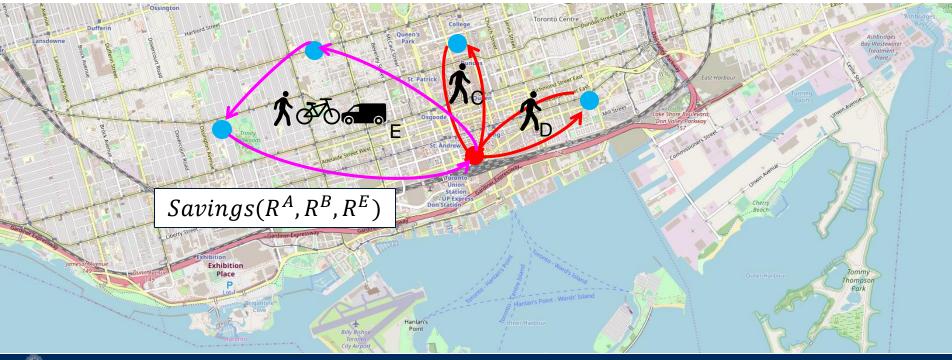
- Selection of VRPMVTTW Heuristic
- VRPMVTTW Solver Implementation
- Problem Formulation
- Case Study Application

3.1 Methods SELECTION OF VRPMVTTW HEURISTIC

- Basis: Liu & Shen (1999)
- Modifications:
 - Waiting costs
 - Service time costs
 - Consideration of all modes
 - Revised time window and service time feasibility constraints

3.3 Methods **VRPMVTTW SOLVER IMPLEMENTATION**

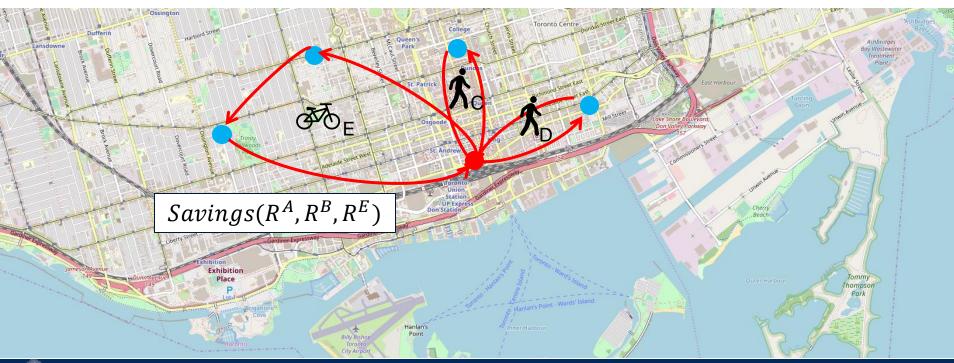

Identify depot and demand points



VRPMVTTW SOLVER IMPLEMENTATION

• Initiate all routes [0, i, 0] with smallest feasible vehicle

- Route Insertion:
 - Feasibility check and savings calculation (for all potential combinations)


- Savings Calculation:
- Consider travel cost, upfront cost, departure times, value of excess capacity

- Savings Calculation:
- Consider travel cost, upfront cost, departure times, value of excess capacity

- Route Insertion:
 - According to maximum savings combination

3.1 Methods

PROBLEM FORMULATION: OBJECTIVE

- Adapted from Munari, Dollevoet, Spillet (2017)
- Demand points numerated i, j
- Vehicle types numerated k
- Costs: C_{ij}^k , W^k , S^k , F^k
- Wait time: w^k
- Nodes serviced by vehicle type k: c^k
- Vehicles of type $k: u^k$

3.2 Methods

PROBLEM FORMULATION: OBJECTIVE

$$\min \sum_{k=1}^K \left(\sum_{(i,j) \in \mathcal{E}} \left(C_{ij}^k x_{ij}^k \right) + W^k \sum_{i=1}^n w_i^k + S^k c^k + F^k u^k \right)$$

- Adapted from Munari, Dollevoet, Spillet (2017)
- Demand points numerated *i*, *j*
- Vehicle types numerated *k*
- Costs: C_{ij}^k , W^k , S^k , F^k
- Wait time: w^k
- Nodes serviced by vehicle type k: c^k
- Vehicles of type $k: u^k$

3.2 Methods PROBLEM FORMULATION: CONSTRAINTS

- Each customer serviced once
- Flow of vehicles internally consistent
- Capacity constraints
- Time window constraint

3.2 Methods SAVINGS FUNCTION

- Consider: travel cost, upfront cost, departure times, value of excess capacity
- Function Parameters: α and β
 - α: trade off between cost savings and departure time
 - β : preference for sequential construction

3.4 Methods CASE STUDY APPLICATION

- Application to downtown Toronto express courier operations
- Last mile delivery operations

3.4 Methods CASE STUDY: VEHICLE CHARACTERISTICS

Vehicle Type	Avg. Speed (km/h)	Volume Capacity (m³)	Operating Cost (\$/min)	Waiting/ ServiceCost (\$/min)	Service Time (min)
Delivery Van	24.0 km/h	6.787 m ³	\$1.129	\$1.017	4.16 min
Cargo Bike	17.7 km/h	2.000 m ³	\$0.720	\$0.720	3.33 min
Walking	5.0 km/h	$0.085\mathrm{m}^3$	\$0.635	\$0.635	2.75 min

Figure 5. Case study vehicle characteristics

3.4 Methods

CASE STUDY: DEMAND DISTRIBUTION

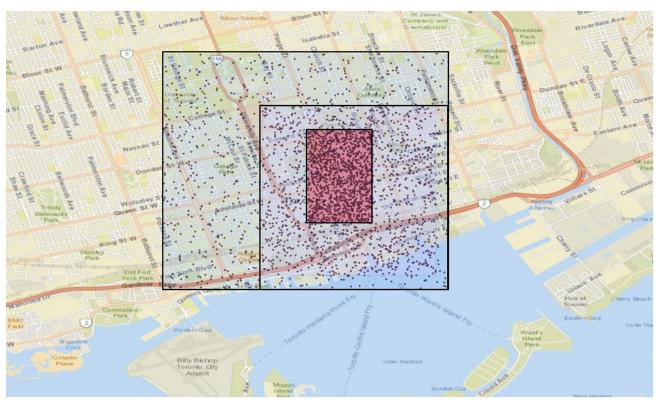
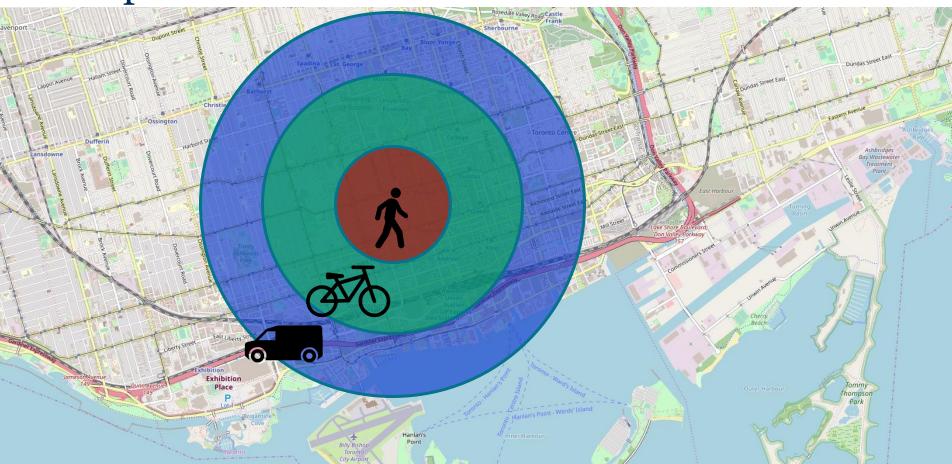
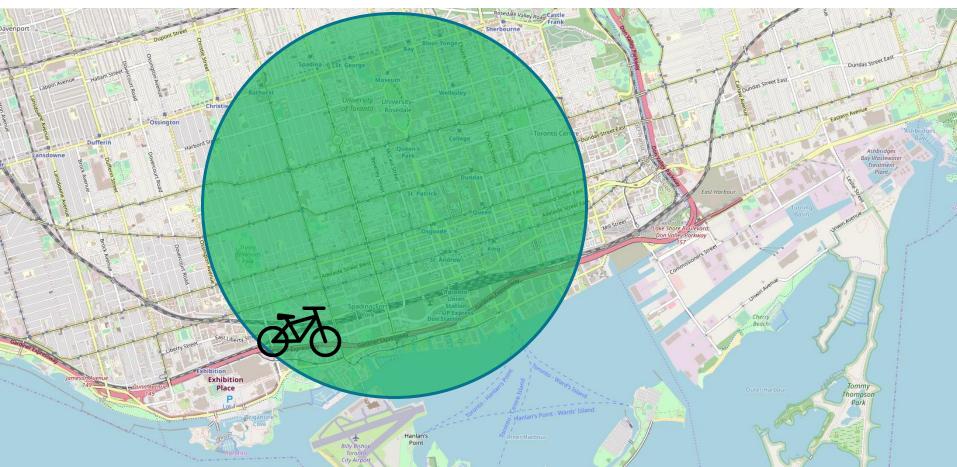


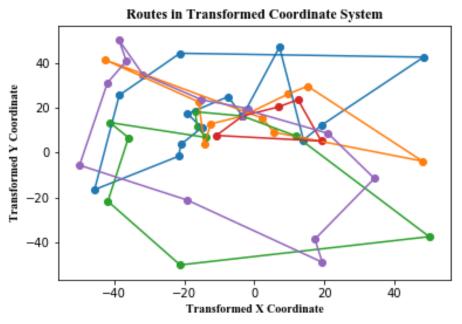
Figure 6. Distribution of demand points in downtown Toronto


4.0 Results

- Overall Findings
- VRPMVTTW Sample Output
- Grid Search Results


1.1 Introduction

Expected Result: service areas


1.1 Introduction

Actual Result: dominant mode in urban context

4.1 Results

VRPMVTTW SAMPLE OUTPUT

Route	Vehicle	Total Travel Time (min)	Cost per day
[0, 68, 65, 40, 58, 0]	Bike	85.6	\$ 24.09
[0, 47, 75, 84, 12, 0]	Bike	69.8	\$ 20.14
[0, 53, 77, 18, 63, 11, 0]	Bike	87.3	\$ 24.50

Figure 7. Top: Sample plot of five routes generated; Bottom: Sample solver output

4.2 Results GRID SEARCH RESULTS

- α =1.00 \rightarrow prefer route savings over avoiding pushing back departure times
- $\beta > 1.00 \rightarrow$ prefer sequential construction

\alphaackslasheta	0.5	1.0	1.5	2.0
0.25	1344	1344	1479	1345
0.50	589	589	589	589
0.75	480	480	478	478
1.00	464	461	456	456

Figure 8. Parameter grid search results

- Sensitivity Analysis
- Cargo Bicycle Effectiveness
- Limitations

SENSITIVITY ANALYSIS: BIKE CAPACITY

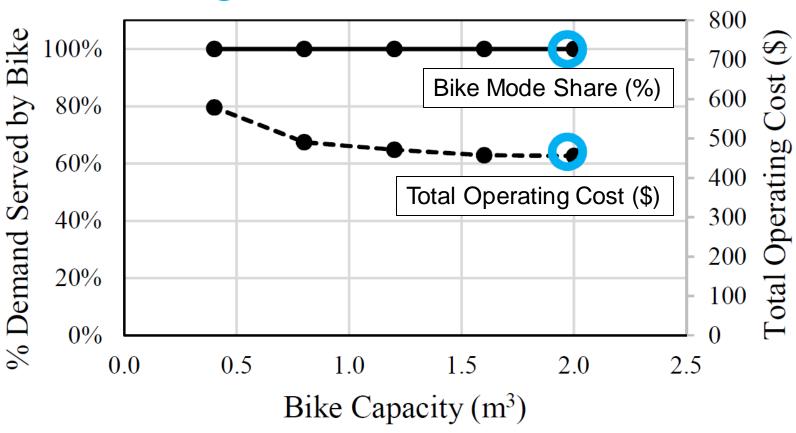


Figure 9. Sensitivity analysis results, altering bike capacity

SENSITIVITY ANALYSIS: BIKE UNIT COST

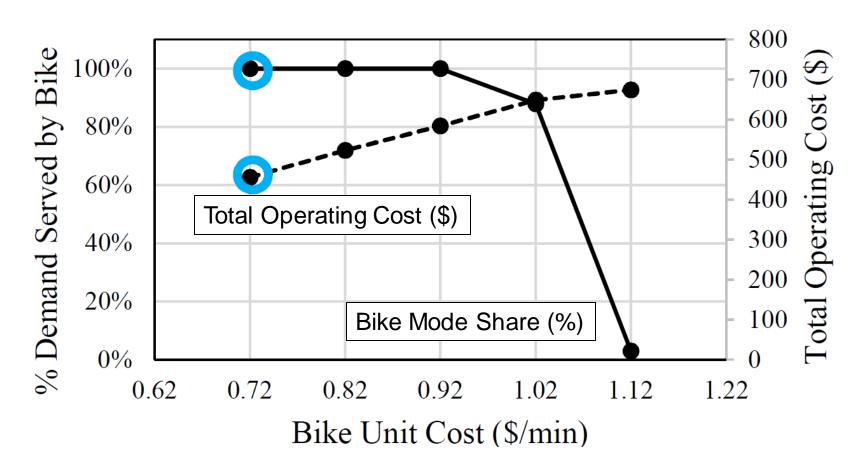


Figure 10. Sensitivity analysis results, altering bike unit cost

SENSITIVITY ANALYSIS: BIKE SPEED

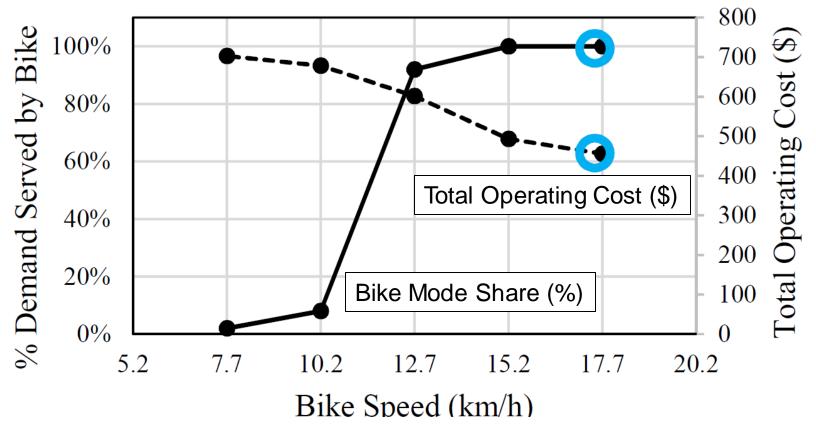


Figure 11. Sensitivity analysis results, altering bike speed

SENSITIVITY ANALYSIS: VAN UNIT COST

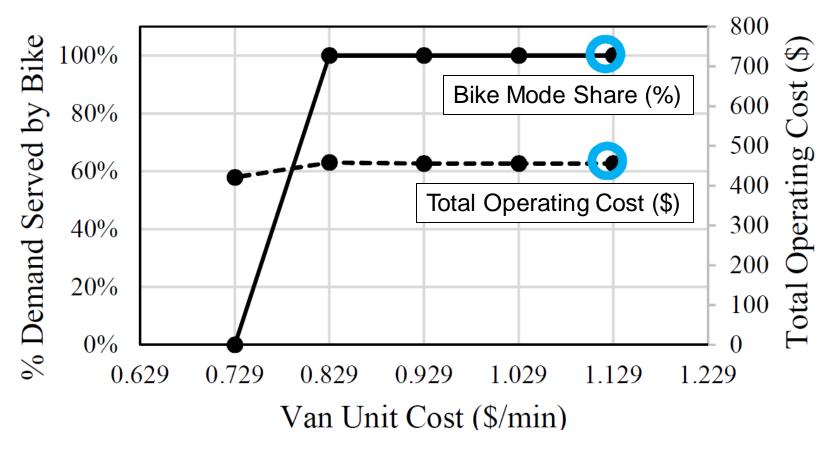


Figure 12. Sensitivity analysis results, altering van unit cost

5.2 Discussion EFFECTIVENESS OF CARGO BICYCLES

- Most cost-effective mode
- Justifies potential for downtown operations
- Out-perform walking trips in capacity and speed, with marginal cost increases

5.3 Discussion **SOLVER LIMITATIONS**

- Restricted to downtown area, with depot downtown (no stem time)
- Deterministic travel times (no reliability representation)
- No minimum delivery staff shift length
- Does not consider a fixed/constrained fleet
- $O(n^3)$ Complexity, limited set of demand data

6.1 Conclusion

- Built upon previous methods for the VRPMVTTW
- Identify cargo bicycles as a promising option for downtown freight delivery

Acknowledgements

- Jeffrey Jiang
- Sina Bahrami, Matthew Roorda
- University of Toronto:
 - Onkar Chander
 - Mehdi Nourinejad
 - Mahyar Jahangiriesmaili
 - Puyuan Deng

Thank You!

References

- **The Drop**, *About Us*; 2019.
- **J. A. Ferland and P. Michelon**. The Vehicle Scheduling Problem with Multiple Vehicle Types. *Journal of the Operational Research Society*, 1988. 39(6): 577-583.
- **G. Kim, Y. S. Ong, C. K. Heng, P. S. Tan and N. A. Zhang**, "City Vehicle Routing Problem (City VRP): A Review," *IEEE Transactions on Intelligent Transportation Systems*, vol. 16, no. 4, pp. 1654-1665, 2015.
- **F. H. Liu and S. Y. Shen**. A Method for Vehicle Routing Problem with Multiple Vehicle Types and Time Windows. *Proceedings of the National Science Council, Republic of China*, 1999. 23(4): 526-536.
- **P. Munari, T. Dollevoet and R. Spliet**. A generalized formulation for vehicle routing problems. *Arxiv*, 2017. 16 September: 1-5.
- **NEO: Networking and Emerging Optimization**, Vehicle Routing Problem; 2018.
- **Yokler**, The electric cargo bike, expert in environmentally-friendly delivery in that last mile; 2019.
- **OpenStreetMap**, *Map of downtown Toroonto*; 2019.

Savings Functions VRPMVTTW SOLVER IMPLEMENTATION

Modified Combined Savings

$$MCS(R^{I}, R^{II}, R^{III}) = \alpha(T^{I} + T^{II} - T^{III}) - (1 - \alpha)\left(\frac{D_{j}^{III} - D_{j}^{I}}{cus^{II}}\right) + V^{I} + V^{II} - V^{III}$$

Modified Optimistic Opportunity Savings

$$MOOS(R^{I}, R^{II}, R^{III}) = MCS(R^{I}, R^{II}, R^{III}) + f(K^{III} - q^{II} - q^{I})$$

Savings Function

$$SAVINGS = MOOS(R^{I}, R^{II}, R^{III}) + (W^{I}w^{I} + W^{II}w^{II} - W^{III}w^{III}) + (S^{I}N^{I} + S^{II}N^{II} - S^{III}N^{III})$$