Creation of a Database for Delivery Journeys in Urban Centres

I-NUF 2019, Long Beach, CA
16th-18th October 2019

Dr.-Ing. Dominic Hofmann
Head of Research
Research Lab for Urban Transport (ReLUT)
Frankfurt University of Applied Sciences
Structure

1. Research Lab for Urban Transport (ReLUT)
2. Need for Action
3. Quantitative Data
4. Practical Approach: LastMileTram
1. Research Lab for Urban Transport (ReLUT)

Frankfurt University of Applied Sciences

- 15,000 students
- Research Focus: Mobility and Logistics
- Research Lab for Urban Transport
 focus on current and future challenges in the field of urban transport (goods & people)
1. Research Lab for Urban Transport (ReLUT)

Research focus

- Transport Planning
- Logistics
- Economics & Data Science
1. Research Lab for Urban Transport (ReLUT)

Research focus

- Interdisciplinary team (Transport Planning, Logistics, Economics, Law, ...)
- Focus on current and future challenges in the field of urban transport (goods & people)
- Development of economical and ecological solutions in the field of delivery traffic (especially: CEP sector, LastMile solutions)
1. Research Lab for Urban Transport (ReLUT)

Homepage

www.RelUT.de (German) www.RelUT.net (English)
2. Need for Action

Impressions of Frankfurt/Main
2. Need for Action

Research Questions

• How comprehensive is the issue of commercial transport?

• What are promising approaches?
2. Need for Action

Amount of Shipments in the German CEP market

Shipment volume in the German CEP market [in mio. shipment], source: BIEK, KEP-Studie 2018, KE-Consult Marktanalyse
2. Need for Action

Just blame the CEP-market!?
3. Quantitative Data

Data base

example: Frankfurt city center (source: Frankfurt UAS)
3. Quantitative Data

Data base

Location of stopping and parking processes (n=1,077)

- Parking area: 40%
- Driving lane: 36%
- Sidewalk: 14%
- Loading yard: 8%
- Cycling infrastructure: 1%
- Bicycle parking lot: 1%

example: Frankfurt city center (source: Frankfurt UAS)
3. Quantitative Data

Data base

Location of stopping and parking processes
(n=1,077)

example: Frankfurt city center (source: Frankfurt UAS)
3. Quantitative Data

Data base

example: Frankfurt city center (source: Frankfurt UAS)
3. Quantitative Data

Data base

Temporal start of stopping and parking processes

example: Frankfurt city center (source: Frankfurt UAS)
3. Quantitative Data

Data base

example: Frankfurt city center (source: Frankfurt UAS)
4. Practical Approach: LastMileTram
4. Practical Approach: LastMileTram

Basic requirements, transhipment: vehicle -> tram
- close to and in the direction of a distribution center
- in the outskirts
- barrier-free station access

Basic requirements, transhipment: tram -> cargo bike
- minimal longer stopping time of the tram
- Parking option for the cargo bike
- barrier-free station access
4. Practical Approach: LastMileTram
4. Practical Approach: LastMileTram
4. Practical Approach: LastMileTram
4. Practical Approach: LastMileTram

draft of the box – not published yet
Thank you for your attention!

Dr.-Ing. Dominic Hofmann
Head of Research, Research Lab for Urban Transport
Frankfurt University of Applied Sciences
phone: +49 (0)69 1533-2351
e-mail: dominic.hofmann@fb1.fra-uas.de