THE SPATIAL DYNAMICS OF AMAZON LOCKERS

INUF 2019 – LOCAL/LAST MILE PICKUP AND DELIVERY

Jiawen Fang USC Sol Price School of Public Policy | Department of Urban Planning October 16 2019

Outline

- **1** Introduction
- 2 Literature
- **3** Research Framework
- **4 Data Collection**
- 5 Data Analysis Methods
- 6 Results and Findings
- 7 Conclusions

1 INTRODUCTION

- Background
- Research Questions

- Increasing Truck Activities Online shopping
- Social impacts: safety, congestion, parking
- Environmental impacts: pollutant, emissions
- Strategy: Pick-up Points (PP) + Automated Parcel (AP) Networks
 - Replace truck trips with walking/biking
 - Reduce negative social and environmental impacts ?
 - Low costs ? + higher efficiency ?

Research Questions – GHG (+)/(-)?

(1) What is the spatial distribution of Amazon Lockers in Los Angeles?

- Clustering?
- Autocorrelation?

(2) Why are those lockers located there?

- Variables that affect the distribution

DemographicsBuilt Environment

- (3) How do people pick up their orders?
- Travel behaviors

2 LITERATURE

- Summary
- Research Gaps

Literature Review – Location Matters

- The Environmental Benefits of PP Networks
- The Variables that Affect the Design of PP Networks
- Developing Sustainable Networked Delivery System

Authors	Place	Findings
Weltevreden (2008)	Netherlands	Both shoppers and pick-up points benefit from vicinity.
Morganti, Dablanc, & Fortin (2014)	France	Population density and internet penetration
Iwan, Kijewska, & Lemke (2016)	Szczecin	Proper location of the machines used for deliveries \rightarrow efficiency
Deutsch & Golany (2017)	Canada	Optimize the locker network based on location, size and demographics.
Lachapelle, Burke, Brotherton, & Leung (2018)	Australia	Proximity to highways, to public transport, population density, a balance of jobs and population, and higher rates of households Internet access

- Few studies describe the spatial distribution patterns of pick-up point locations
- No studies have investigated the spatial distribution of Amazon Lockers in US cities
- LA a mix of walkable and non-walkable places \neq European cities
- Try to fill this gap by
 - Describing the spatial pattern using spatial analysis tools
 - Analyzing the socio-economic and built environment variables
 - Estimating the potential GHG emission reduction
 - Starting from LA and expand the studies to other major cities in the US.

3 Research Framework

- Describe
- Explain
- Estimate

4 Data Collection

- Amazon Locker
- Built Environment
- Demographics

Amazon Locker Locations

- Google Map API "Text Search"
- Circle search
- Radius limit
- Python
- Hexagon fishnet
 - r=2miles
- N=502
- 273 Lockers in total.

Built Environment Data

- API + Python
- The same fishnet grid as Amazon Locker search
- Walkability/Bikeability
- · Walkscore.com API
- Parking Density
- Google Map API Nearby Search
- "type" parameter = "parking"
- Transit density
 - · LA Metro Bus and Rail GIS Data

Variable	Data	How to use it in research
Walkability	Walk/Bike score at the centroid of each census tract	Walkscore at the centroid of each census tract
Bikeability	Bike score at the centroid of each census tract	Bike score at the centroid of each census tract
Transit	The number of transit stops	The number of transit stops / Tract Area
Parking	The number of parking lots	The number of parking lots/ Tract Area

Demographics Data

- Source: US Census Bureau, 2017, ACS 5 year estimates
- Variables (unit of analysis census tract)

Variable	Data (unit of analysis – census tract)	How to use it in research
Population	The number of people	The number of people / Tract Area
Age 15-39	The number of persons aged 15-39	The number of persons aged 15-39 / Tract Area
Education	The number of people with bachelor's degree or higher	The number of people with bachelor's degree or higher / Tract Area
White	The number of white people	The number of white people / Tract Area
Internet	The number of household with internet use	The number of household with internet subscriptions / Tract Area
Income	The median household income (\$)	The median household income (\$)

5 Methods

- Clustering
- Autocorrelation
- Regression

Spatial Analysis Tools

- Spatial Point Pattern Analysis → Original Locker Location Data (Point Data)
 - Kernel density when the points are distributed independently
 - Ripley's K-function when the points are distributed dependently
- Spatial Autocorrelation → Locker Service Availability in Each Census Tract (Polygon Data)
 - Availability the # of 1-mile locker buffers intersecting each census tract
 - Moran's I statistics check tracts are affecting each other
- Spatial Regression
 - Ordinary Least Squares (OLS) Regression Global
 - Geographically Weighted Regression (GWR) Local

6 Findings

- Clustering \checkmark
- Spatial autocorrelation \checkmark
- Spatial Regression ?
- Spillover effects !

Clustering

- Kernel Density Test \rightarrow Three-tier-clustering
 - Tier 1 (d=0.9): 1, 2
 - Tier 2 (d=0.6): 3, 4
 - Tier 3 (d=0.3): 5-12
- K-Function Test
 - Significant Clustered at 99% conf. level

Spatial Autocorrelation

Step 1 Point data → Polygon data (Spatial Join) Step 2 Moran I's statistics – Significant + Positive

Given the z-score of <u>192.84304949</u>, there is a less than 1% likelihood that this clustered pattern could be the result of random chance.

Spatial Regression – OLS

- Narrow the geographic boundary to Urbanized Area
 - 13 census tracts removed (Non-urbanized)
 - 1718 tracts with lockers
 - 611 tracts with no lockers
- Unit of analysis: census tracts
- Correlation test and Variable Filtering before OLS
 - The correlation coefficients with Y >3.0;
 - The correlation coefficients with other selected independent variables (*Xn*) ≤ 0.7;
- Selected Independent Variables (2 sets):
 - Walk, parking, transit, income, education, internet
 - Walk, parking, transit, income, education, population

Spatial Regression – OLS

	Model (1)	Model (2)	
Walk	0.293***	0.292***	
Parking	0.120***	0.115***	
Transit	0.110***	0.112***	
Income	0.042	0.070**	
Education	0.545***	0.256***	
Internet	-0.426***		
Population		-0.163***	
Ν	2329	2329	
Adjusted R-squared	0.2493	0.2376	
Standardized beta coefficients	* n<0.05 ** n<0.01 *** n<0.001		

Standardized beta coefficients * p<0.05, ** p<0.01, *** p<0.001

Negative Effects?

Not Significant?

Significant and Strong

Spatial Regression – GWR

	Model (1)	Model (2)
Adjusted R-squared	0.4123	0.4010
AIC * (Aiaike Information Criterion) * Model performance for GWR	8085.22 (better)	8133.50
 GWR better than OLS (Adj.R²) Very little difference between Model 1 and Model 2 Places in red are better explained by the GWR model. 	Smi Valey Smi Valey Documentation Sinto	Sin Ville Sin Ville Cona
0.17 - 0.21 0.22 - 0.26 0.27 - 0.37	Redon Anaheim Santa Ana	Redont Anaheim Santa Ana

Spatial Regression – GWR – Predicted Results

- Small business: bring foot traffic that may transfer to sales (711)
 - Little overlapping products
 - Few stipends
- Business cooperation with Amazon
 - WF, Chase, Sprint
 - Double foot traffic to Amazon.

7 Conclusions

- Conclusions
- Limitations and future studies

- Kernel Density tool identified a "three-tier-clustering" pattern based on the level of density.
- Global Moran's I Index detected a significant positive spatial autocorrelation at 99% confidence level.
- GWR model can explain 41% of the variation in dependent variables, while OLS model can only explain 24% of the variation in dependent variables.
- Three demographic variables population/internet use, income, education **
- Three built environment variables walkability, transit, parking ***
- Beyond the spatial model, potential spillover effects and business cooperation are also important factors that affect the distribution of lockers.

Limitations and Future Studies

- Model specification still over half of the variations cannot be explained
- Internet Use Household Density
 - o Smart phone use may be a better indicator than internet use
 - \odot Household density also includes the influence of population density
- How to quantify business cooperation and spillover effects and include them into the regression model.
- Estimating GHG savings needs real travel behavior data from customers and couriers.
 - Survey to be implemented

- 1. Amchang, C. & Song, S.-H. (2018). Locational Preference of Last Mile Delivery Centres: A Case Study of Thailand Parcel Delivery Industry. Journal of Industrial Distribution & Business, 9(3), 7–17.
- 2. Deutsch, Y., & Golany, B. (2017). A parcel locker network as a solution to the logistics last mile problem. International Journal of Production Research, 56(1-2), 251–261.
- 3. Iwan, S., Kijewska, K., & Lemke, J. (2016). Analysis of Parcel Lockers' Efficiency as the Last Mile Delivery Solution The Results of the Research in Poland. Transportation Research Procedia, 12, 644–655.
- 4. Kim, J., Xu, M., Kahhat, R., Allenby, B., & Williams, E. (2008). Design and assessment of a sustainable networked system in the U.S.; Case study of book delivery system. In 2008 IEEE International Symposium on Electronics and the Environment. https://doi.org/10.1109/isee.2008.4562874
- 5. Kim, J., Xu, M., Kahhat, R., Allenby, B., & Williams, E. (2009). Designing and assessing a sustainable networked delivery (SND) system: hybrid busin ess-to-consumer book delivery case study. Environmental Science & Technology, 43(1), 181–187.
- 6. Lachapelle, U., Burke, M., Brotherton, A., & Leung, A. (2018). Parcel locker systems in a car dominant city: Location, characterisation and potential impacts on city planning and consumer travel access. Journal of Transport Geography, 71, 1–14.
- 7. Lemke, J., Iwan, S., & Korczak, J. (2016). Usability of the Parcel Lockers from the Customer Perspective The Research in Polish Cities. Transportation Research Procedia, 16, 272–287.
- 8. Liu, C., Wang, Q., & Susilo, Y. O. (2017). Assessing the impacts of collection-delivery points to individual's activity-travel patterns: A greener last mile alternative? Transportation Research Part E: Logistics and Transportation Review. https://doi.org/10.1016/j.tre.2017.08.007
- 9. Morganti, E., Dablanc, L., & Fortin, F. (2014). Final deliveries for online shopping: The deployment of pickup point networks in urban and suburban areas. Research in Transportation Business & Management, 11, 23–31.
- 10. Moroz, M., & Polkowski, Z. (2016). The Last Mile Issue and Urban Logistics: Choosing Parcel Machines in the Context of the Ecological Attitudes of the Y Generation Consumers Purchasing Online. Transportation Research Procedia, 16, 378–393.
- 11. Nolmark, H., Browne, M., Giuliano, G., & Holguin-Veras, J. (2016). Why Goods Movement Matters. Regional Plan Association.
- 12. Oliveira, L. K. de, de Oliveira, L. K., Morganti, E., Dablanc, L., & de Oliveira, R. L. M. (2017). Analysis of the potential demand of automated delivery stations for e-commerce deliveries in Belo Horizonte, Brazil. Research in Transportation Economics, 65, 34–43.
- 13. Pålsson, H., Pettersson, F., & Hiselius, L. W. (2017). Energy consumption in e-commerce versus conventional trade channels Insights into packaging, the last mile, unsold products and product returns. Journal of Cleaner Production, 164, 765–778.
- 14. Taniguchi, E., & Kakimoto, Y. (2003). Effects of e-commerce on urban distribution and the environment. Journal of Eastern Asia Society for Transportation Studies, 5, 2355–2366.
- 15. Vakulenko, Y., Hellström, D., & Hjort, K. (2018). What's in the parcel locker? Exploring customer value in e-commerce last mile delivery. Journal of Business Research, 88, 421–427.
- 16. Weltevreden, J. W. J. (2008). B2c e-commerce logistics: the rise of collection-and-delivery points in The Netherlands. International Journal of Retail & Distribution Management, 36(8), 638–660.
- 17. Xu, M., Allenby, B., Kim, J., & Kahhat, R. (2009). A dynamic agent-based analysis for the environmental impacts of conventional and novel book retailing. Environmental Science & Technology, 43(8), 2851–2857.
- 18. Xu, M., Kim, J., Kahhat, R., & Allenby, B. (2008). Market dynamics and environmental impacts of e-commerce: A case study on book retailing. In 2008 IEEE International Symposium on Electronics and the Environment. https://doi.org/10.1109/isee.2008.4562873
- 19. Zhang, L., & Zhang, Y. (2013). A Comparative Study of Environmental Impacts of Two Delivery Systems in the Business-to-Customer Book Retail Sector. Journal of Industrial Ecology, 17(3), 407–417.

Thanks for Your Listening! Comments are Welcome!