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Abstract

We study stability of traffic flow under output feedback ramp metering inspired by joint model
predictive control and moving horizon estimation. The running and terminal costs are linear in
cell densities, the terminal set is the uncongested region, and the output comprises of density
measurements from a subset of the cells. For the cell transmission model over a line network, we
provide sufficient conditions on the subset of measurements, the estimation and control horizons,
and the inflows at the ramps under which the traffic system is input to state stable. Our analysis
relies heavily on the monotonicity property of the traffic flow dynamics.
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3 Introduction

The wide spread use of personal mobile devices and the increasing penetration of connected vehicles
are giving rise to new sensing modalities in urban traffic systems, in addition to traditional ones
consisting primarily of loop detectors and cameras. There has been a growing interest in estimating
traffic states from such measurements. Accurate estimates however require a large number of
measurements or a stationary environment. A rigorous understanding of how different combinations
of measurement quality, traffic dynamics and control strategy affect performance, e.g., in terms of
travel time, is lacking in general. The objective of this proposal is to lay the foundations of a
framework that informs joint optimal choice of estimation and control algorithms, under given
sensing modes. The approach can then be further built upon to optimize resource allocation for
traffic sensing infrastructure. Specifically, we develop output feedback ramp metering strategies for
control of freeways, with provable performance guarantees.

4 Stability Analysis of the Cell Transmission Model under MPC-
MHE Ramp Metering

Feedback ramp metering control uses sensing, typically from the freeway mainline, to modulate
inflow from the ramps into mainline. There are two main paradigms: performance evaluation of
a particular control policy, e.g., ALINEA, or designing a control policy which optimizes a given
performance criterion, e.g., see [1]. This project adopts the latter approach, which is also referred
to as the model predictive control (MPC) approach.

The existing control algorithms, which come with performance guarantees, typically require
traffic states of density or queue lengths as inputs. A common approach then is to first estimate
the state from sensor measurements and then input it to control algorithms. However, rigorous
performance analysis of such a sequential approach is lacking. Estimating traffic state from sensor
measurements has attracted sustained research from the transportation science research community,
e.g., see [2–4]. While there has been recent interest in designing control algorithms that can directly
use sensor measurements, e.g., see [5] and an overview in [6], analytical performance evaluation is
lacking.

The paradigm of directly using sensor measurements for control is known as output feedback in
control theory. An overview of linear time-invariant systems is provided in [7]. A modern overview
of MPC is provided in [8]. Stability issues under state feedback are covered in [9,10]. Independent
state estimation in the context of MPC is discussed in [11]. Output feedback MPC for constrained
linear systems is presented in [12]. Computational techniques underlying the moving horizon control
and estimation in the context of MPC is provided in [13]. Recently, joint estimation and control with
stability guarantees were provided in [14]; however, this result is only initial, and more importantly,
their implications for urban traffic systems under modern or traditional sensing modalities are not
understood yet. In this study, we exploit the properties of cell transmission models and design an
MPC controller with simultaneous state estimation in a similar spirit to [14].

The main contributions of the project are as follows. First, we propose an MPC controller
with simultaneous state estimation that only relies on partial information of traffic states. Sec-
ond, we provide sufficient conditions on the control and estimation horizons, and the amount of
measurements, under which a line network gives maximal throughput under the proposed MPC-
MHE controller. Third, we illustrate through simulations, that an appropriate extension of the
MPC-MHE can maintain maximal throughput even under less measurements.
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We conclude this section by stating key notations to be used throughout the work. For integers
n1 and n2 ≥ n1, we let [n1 : n2] := {n1, n1 + 1, . . . , n2}. For brevity, [1 : n1] will be denoted
compactly as [n1]. We shall use x(t1 : t2) to denote the sequence {x(t1), x(t1 + 1), . . . , x(t2)}.
R≥0 will denote the set of non-negative reals. For vectors x and y, we shall let x ≤ y imply
componentwise inequalities and let x ≺ y imply x ≤ y and x 6= y. For a vector x, we shall denote
its i-th component either by xi or [x]i. All matrices are denoted by uppercase letters in boldface
to differ from numbers denoted by uppercase letters. � denotes the elementwise multiplication
between vectors. I will denote the identity matrix whose dimension will be clear from the context.
For x ∈ R, we let [x]+ := max{x, 0}.

4.1 Model and Problem formulation

Consider a line freeway segment divided into I cells indexed by i = 1, ..., I each with one on-ramp
and one off-ramp; see Figure 1 for illustration. Extension to the case when some cells do not have on-
ramp or off-ramp is straightforward and will not affect the results qualitatively. Let λi represent the
exogenous traffic demand at ramp i. Let xmi (t) and xri (t) denote the number of vehicles in cell i and
on ramp i, respectively, at time t. Let fi(t) and ui(t) denote outflow from cell i and the inflow into
cell i from its on-ramp, respectively, at time t. Therefore, ui can be interpreted as a ramp-metering
control at ramp i. Let βi ∈ (0, 1), denote the fraction of outflow from cell i that enters cell i+ 1 at
time t; the rest of the 1 − βi fraction exits through the off-ramp. Let xm(t) := {xmi (t) : i ∈ [I]},

Cell i - 1 Cell i Cell i + 1

On-ramp i Off-ramp iOff-ramp i - 1
𝜆!

𝛽!"#𝑓!"# 𝛽!𝑓!

𝑢!
𝑥!" 𝑥!#$

"𝑥!%$"

𝑥!"

Figure 1: A line freeway segment.

xr(t) := {xri (t) : i ∈ [I]}, u(t) := {ui(t) : i ∈ [I]}, and λ := {λi : i ∈ [I]}, be the compact
notations. We use the Cell Transmission Model [15] with the triangular fundamental diagram to
describe traffic flow dynamics:

xm1 (t+ 1) = [xm1 (t)− f1(xm(t)) + u1(t)]
+

xmi (t+ 1) = [xmi (t) + βi−1fi−1(x
m(t))− fi(xm(t)) + ui(t)]

+ , i ∈ [2 : I]

xri (t+ 1) = xri (t)− ui(t) + λi, i ∈ [I]

fi(x
m(t)) = min

{
vix

m
i (t),

wi+1

βi

(
x̄mi+1 − xmi+1(t)

)
, Cmax

i

}
, i ∈ [I − 1]

fI(x
m(t)) = min {vIxmI (t), Cmax

I }

(1)

where vi, wi, x̄i and Cmax
i are parameters in the fundamental traffic diagram. We assume unbounded

queue storage capacity on ramps, i.e., xri (t) ∈ [0,+∞) for all i ∈ [I]. The ramp metering control
ui(t) satisfies:

ui(t) ∈
[
0,min{ūi, xri (t) + λi}

]
, i ∈ [I] (2)

where ūi denotes the flow capacity of ramp i. The constraint in (2) ensures that the traffic state
satisfies xmi (t) ∈ [0, x̄i] for all i ∈ [I], t ≥ 0, under the dynamics in (1).
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Let R be an I × I matrix such that Ri,i−1 = βi−1 for all i ∈ [2 : I], and all other entries being
zero. The control inputs designed in this project will ensure non-negativity of xm. Under this
implicit assumption, (1) can be compactly written as:

xm(t+ 1) = xm(t)− (I−R)f(xm(t)) + u(t)

xr(t+ 1) = xr(t)− u(t) + λ
(3)

where f(xm) is the compact notation representing the relationship between outflow and the number
of vehicles in (1). Finally, let x(t) = [xm(t) xr(t)]T denote the state of the entire network.

In the uncontrolled case, i.e., when u(t) ≡ λ, mainline equilibrium flow is:1

f eq(λ) = (I−R)−1λ (4)

Let xcrit
i :=

Cmax
i

vi
, i ∈ [I] be the critical queue lengths on the mainline cells. We say that a

mainline cell i is uncongested if xmi ≤ xcrit
i . It is shown in [16] that, for every λ satisfying (9), there

exists a unique uncongested equilibrium state on the mainline. Let us denote this as xunc(λ), i.e.,
fi(x

unc(λ)) = vix
unc
i (λ) for all i ∈ [I] (see Fig 2 for illustration).

Cell i - 1 Cell i Cell i + 1

On-ramp i Off-ramp iOff-ramp i - 1
!!

"!"##!"# "!#!

$!
!!" !!#$

"!!%$"

!!"

Fig. 1: Sketch of a line freeway segment

rest of the 1 � �i fraction exits through the off-ramp. Let
xm(t) := {xm

i (t) : i 2 [I]}, xr(t) := {xr
i (t) : i 2 [I]},

u(t) := {ui(t) : i 2 [I]}, and � := {�i : i 2 [I]}, be the
compact notations. We use the cell transmission model with
the triangular fundamental diagram to describe traffic flow
dynamics:

xm
i (t + 1) = xm

i (t) + �i�1fi�1(x
m(t)) � fi(x

m(t)) + ui(t),

i 2 [I]

xr
i (t + 1) = xr

i (t) � ui(t) + �i, i 2 [I]

fi(x
m(t)) = min

⇢
vix

m
i (t),

wi+1

�i

�
x̄m

i+1 � xm
i+1(t)

�
, Cmax

i

�
,

i 2 [I � 1]

fI(x
m(t)) = min {vIx

m
I (t), Cmax

I }
(1)

vi, wi, x̄i and Cmax
i are parameters in the fundamental

diagram. Under the dynamics in (1), traffic state satisfies
xm

i (t) 2 [0, x̄i] for all i 2 [I], t � 0. We assume unbounded
queue storage capacity on ramps, i.e., xr

i (t) 2 [0, +1) for
all i 2 [I]. Furthermore, the controlled outflows from the
ramps satisfy

ui(t) 2 [0, min{xr
i (t) + �i, ūi}],

xm
i (t) + �i�1fi�1(x

m(t)) � fi(x
m(t)) + ui(t)  x̄i

(2)

for all i 2 [I] where ūi denotes the flow capacity of the
ramps.

Let f(xm) be the compact notation representing the rela-
tionship between outflow and vehicle occupancy as in (1).
Let I be the identity matrix with appropriate dimension and
R := [ri�1,i = �i�1; rj,i = 0 8j 6= i � 1; i 2 [I]], (1) can
then be compactly written as:

xm(t + 1) = xm(t) � (I � R)f(xm(t)) + u(t)

xr(t + 1) = xr(t) � u(t) + �
(3)

Finally let x(t) = [xm(t) xr(t)]T denote the state of the
entire network. We consider the following output:


ym(t)
yr(t)

�

| {z }
y(t)

=


C 0
0 I

� 
xm(t)
xr(t)

�
(4)

for an appropriate matrix C. That is, we assume that we
have perfect information about states of the ramps, but not
necessarily for the mainline. The perfect information about
ramps can be equivalently replaced with knowing the initial
condition, following which one can compute the state at any

!!"#$(#) !

%!(!)

&!%&'

%!()(#) '!
(!*+

Fig. 2: Illustrations of the parameters of the fundamental
diagram

time using (1); recall that u(t) and � are assumed to be
known.

Example 1: [16] shows that the occupancy rate can be

calculated as
Average length of vehicles

Length of cell i
xm

i (t), which can

be measured from loop detectors installed at road sections
[17] or connected vehicles cruising on roads [18]. If the
occupancy rate is used as the measured output ym, then the
matrix C is diagonal where the diagonal element is positive
for the cell such that the occupancy information is accessible,
e.g. the cell is installed with loop detectors or crossed by
connected vehicles, and zero otherwise; one could compute
xr(t � L) from known demand � and past control input
u(0 : t � L � 1) and assuming xr(0) = 0.

[KS]:
needs
rewrit-
ing

It is desired to design a feasible control u(t), t � 0,
to minimize a linear cost

P1
t=0 l>x(t), for given positive

coefficient vectors l. Instead of solving the infinite horizon
problem that is generally intractable, given a forward horizon
T , at each time t, following standard model predictive
control with a terminal cost and constraint we compute
feasible control u(t) to minimize the following finite-horizon
criterion

t+T�1X

s=t

l>x(s) + b>x(t + T ) (5)

subject to the constraints imposed by the system dynamics
(3), constraints (2) on the control from t to t + T � 1 and
constraints on the terminal mainline state: x(t+T ) 2 Xf . In
(5), l = [lm lr] and b = [bm br], where lm, bm are positive
coefficients corresponding to mainline cells and lr, br are
positive coefficients corresponding to ramps. In particular, b
penalizes the terminal state at t+T . The initial condition x(t)
is assumed to be known in standard MPC. Given a backward
horizon L, we remove the assumption and use the worst-case
unknown initial condition x(t � L) computed from moving
horizon estimation scheme subject to system dynamics (3)
and measurements (4) collected up to time t as suggested by
[15].

III. THE MPC-MHE CONTROLLER

As mentioned in the previous section, we employ the
model predictive control scheme with simultaneous state
estimation called MPC-MHE control in [15] to solve the

Figure 2: Illustrations of the parameters of the fundamental diagram

We consider the following output:
[
ym(t)
yr(t)

]

︸ ︷︷ ︸
y(t)

=

[
C 0
0 I

] [
xm(t)
xr(t)

]
(5)

for an appropriate, not necessarily square, matrix C. That is, we assume that we have perfect
information about states of the ramps, but not necessarily for the mainline.

Example 1 Occupancy rate is a commonly available measurement, e.g., through loop detectors [17],

or from connected vehicles [4]. [18] shows that the occupancy rate is equal to
average vehicle length

length of cell i
xmi (t).

Therefore, when occupancy rate is available, C in (5) is a diagonal matrix, with zero diagonal entries
corresponding to missing detectors on the corresponding cells.

1Since all the elements in R are strictly less than one, and hence the spectral radius of R is less than one, the
inverse (I−R)−1 exists and all of its entries are nonnegative.
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It is of interest to design a control signal {u(t) : t ≥ 0} to minimize a linear cost
∑∞

t=0 l
>x(t)

subject to (2)-(3), for given non-negative coefficient vector l. Instead of solving this infinite horizon
problem, the model predictive control (MPC) approach recursively solves a related finite horizon
problem, which at time t is:

t+T−1∑

s=t+1

l>x(s) + b>x(t+ T ) (6)

subject to (2)-(3) and a terminal constraint x(t+ T ) ∈ Xf , where T is the (forward) horizon, and
the coefficient vector b in the terminal cost is non-negative. If {û(t), . . . , û(t + T − 1)} denotes
optimal solution to (6), then u(t) is set to be equal to û(t), then (6) is re-solved at t+ 1 to similarly
obtain u(t+ 1), and so on.

In standard MPC, x(t) is assumed to be known when solving (6). In this project, we are
rather interested in the setting where, the controller has knowledge of the past measurements
y(t), y(t−1), . . . when solving (6). A natural approach then is to augment MPC with an estimation
component. We adopt the moving horizon estimation (MHE) approach, and accordingly pursue
the joint MPC-MHE approach, e.g., see [14]. The next section elaborates on this approach.

4.2 The MPC-MHE Ramp Metering Controller

We start by introducing a few notations. For t2 ≥ t1, let φt2t1(x◦, u(t1 : t2 − 1)) denote the state at
time t2 under (3) starting from x(t1) = x◦ under control inputs u(t1 : t2−1), and let φt2,mt1

(x◦,m, u(t1 :
t2−1)) denote the corresponding mainline state. For given input sequence u(t1 : t2−1) and output
sequence y(t1 : t2), let the set of feasible initial conditions on the mainline be:

X ◦,mt1:t2 :=
{
x◦,m ∈ [0, x̄] : the trajectory φt2t1

([
x◦,m

xr(t1)

]
, u(t1 : t2 − 1)

)
satisfies (5) for t ∈ [t1, t2],

φt2,mt1
(x◦,m, u(t1 : t2 − 1)) ≤ x̄ for s = t1, . . . , t2

}

(7)
and let the set of feasible control inputs over a future time horizon T be:

Ut1:t2(T, x̄r) :=
⋂

x◦,m∈X ◦,m
t1:t2

Ũt1:t2(T, x̄r;x◦,m)

Ũt1:t2(T, x̄r;x◦,m) :=
{
û(t2 : t2 + T − 1) : ûi(t) ∈ [0,min{xri (t) + λi, ūi}], ∀i ∈ [I], t ∈ [t2, t2 + T − 1],

φtt1

([
x◦,m

xr(t1)

]
, u(t1 : t2 − 1), û(t2 : t− 1)

)
≤ x̄, ∀t ∈ [t2, t2 + T − 1],

φt2+Tt1

([
x◦,m

xr(t1)

]
, u(t1 : t2 − 1), û(t2 : t2 + T − 1)

)
∈ Xf

}

(8)
where Xf := {x : 0 ≤ xm ≤ xcrit, 0 ≤ xr ≤ x̄r}.
Ut1:t2(T, x̄r) is non-empty if λ is sufficiently small and if T is sufficiently large. It is natural to

assume that λ is sufficiently small so that

f eq
i (λ) ≤ Cmax

i , i ∈ [I] (9)

i.e., the equilibrium flow f eq(λ) in the uncontrolled case does not exceed the flow capacity of the
fundamental diagram on mainline cells.
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Proposition 1 If inflow λ satisfies (9) with strict inequalities, then, for every x◦,m ∈ X ◦,mt1:t2 and
x̄r, Ũt1:t2(T, x̄r;x◦,m) is non-empty for sufficiently large T .

For brevity, we shall denote the set in (8) for the case when x̄r = 0 simply as Ut1:t2(T ).
MPC-MHE controller augments control design over a forward horizon of length T with state

estimation based on observation from the past horizon of length L. Specifically, at each time t, for
given input sequence u(t− L : t− 1), output sequence y(t− L : t), we solve the following min-max
problem:

min
û(t:t+T−1)∈Ut−L:t(T )

max
x◦,m∈X ◦,m

t−L:t

J(x◦,m, û(t : t+ T − 1)) :=
t+T−1∑

s=t

l>φst−L + b>φt+Tt−L (10)

where φst−L ≡ φst−L
([

x◦,m

xr(t− L)

]
, u(t− L : t− 1), û(t : s− 1)

)
, s ∈ [t : t+ T ].

Let (x◦,m,∗, û∗(t : t + T − 1)) denote a solution to (10). The control input for time t is chosen
as u(t) = û∗(t). The process is then repeated at t+ 1 to find u(t+ 1), and so on.

4.3 Input-to-State Stability of the MPC-MHE Controller

We now find sufficient conditions under which the MPC-MHE controller is stabilizing. Following
[14], this relates to the existence of saddle-point for the min-max problem in (10). We introduce an
assumption on the matrix C towards this purpose, which will also address the undesirable feature
of the dependence on all feasible initial conditions X ◦,mt−L:t in (8).

Assumption 1 C is a diagonal matrix such that for every nonzero element ci,i, there exists at least
one nonzero adjacent element ci−1,i−1 or ci+1,i+1, and for every zero element cj,j, both cj−1,j−1 and
cj+1,j+1 are nonzero.

Proposition 2 Let Assumption 1 be true. There exists x̂◦,m ∈ X ◦,mt1:t2 such that Ut1:t2(T ) = Ût1:t2(T ; x̂◦,m).

Remark 1 The C matrix in Example 1 is diagonal; it satisfies Assumption 1 if measurement is
available from an appropriate combination of cells. Note that one needs measurements from at least
2/3 fraction of the cells for the assumption to be true.

Theorem 1 Let Assumption 1 be true, T be sufficiently large, and the inflow λ satisfy (9) with
strict inequalities. Then, for every t ≥ L, past control input sequence u(t − L : t − 1), and past
measured output sequence y(t− L : t), there exist x◦,m,∗ ∈ Xm and û∗(t : t+ T − 1) such that

J(x◦,m,∗, û∗(t : t+ T − 1)) = min
û(t:t+T−1)∈Ut−L:t(T )

J(x◦,m,∗, û(t : t+ T − 1))

= max
x◦,m∈X ◦,m

t−L:t

J(x◦,m, û∗(t : t+ T − 1))
(11)

Moreover, the initial condition x◦,m,∗ is the unique maximal element in X ◦,mt−L:t.

Remark 2 1. Theorem 1 suggests that to find a pair (x◦,m∗, û∗(t : t + T − 1)), one can first
find the maximal element x◦,m∗ in X ◦,m and then solve the minimization problem in (11) for
û∗(t : t+ T − 1).

9



2. If conditions of Theorem 1 hold true then one can write

J(x◦,m,∗, û∗(t : t+ T − 1)) = min
û(t:t+T−1)∈Ut−L:t(T )

V (xm,∗(t), û(t : t+ T − 1)) =: V ∗(xm,∗(t))

where xm,∗(t) = φt,mt−L(x◦,m,∗, u(t− L : t− 1)), in terms of a cost-to-go function V .

We now state the result on the input-to-state stability of the closed-loop system consisting of
(3), (5) in feedback with the MPC-MHE controller in (11), with the exogenous inflow λ interpreted
as the input in this context. In order to achieve this, we need additional conditions on the system,
the backward horizon L, and the cost coefficients.

Theorem 2 Let Assumption 1 be true, T be sufficiently large, and the inflow λ satisfy (9) strictly.
Furthermore, let the following be true: (i) for all u(t−L−1 : t−1), y(t−L−1 : t) and xr(t−L−1 : t),
t ≥ L+ 1:

∀x◦,m ∈ X ◦,mt−L:t, ∃ x̃◦,m s.t. φt−L,mt−L−1(x̃
◦,m, u(t−L−1)) = x◦,m & y(t−L−1) = C

[
x̃◦,m

xr(t− L− 1)

]

(12)
and, (ii) for every λ satisfying (9) strictly, there exists a control u that satisfies (2) and a η ≥ 0
such that

b>φt+1
t (x, u)− b>x ≤ −l>x+ η>λ

φt+1
t (x, u) ∈ Xf , ∀ x ∈ Xf

(13)

Then, the closed-loop system consisting of (3), (5) in feedback with the MPC-MHE controller in
(11) is input-to-state stable with respect to λ, i.e.,

‖x(t)‖1 ≤ β(‖x̂(L)‖1, t) + γ(‖λ‖1), ∀ t ≥ L, x(0) ∈ X (14)

where β(k, t) :=

(
1− a1

a2

)t 3a2k

a1
and γ(k) :=

3a2ηmaxk

a21
with ηmax = maxi ηi, a1 = mini li and

a2 = T maxi∈[I]
x̄i
xcrit
i

· max{li, bi}.

Remark 3 It is straightforward to see that x̃◦,m which satisfies (12) belongs to X ◦,mt−L−1:t−1.

Example 2 A combination of u, l and b is as follows. Pick u = λ, l to be arbitrary in RI≥0,
and b such that bi = [(I − R)−>l]i/vi, i ∈ [I]. Recall that for every x ∈ Xf , we have xr = 0
and fi(x

m) = vix
m
i . Therefore, b> (φ(x, u)−x) = b> (λ− (I−R)f(xm)) ≤ −l>x + η>λ, where

the inequality follows from bi = [(I − R)−>l]i/vi, i ∈ [I]. This establishes the first condition in
(13). The second condition follows from the proof of Proposition 1 in Appendix 4.6, where we show
positive invariance of Xf under u = λ.

4.4 Simulations

Consider a line network consisting of ten cells. Similar to [16], we assume homogeneous cells, with

parameters vi = 0.5veh/time step, wi =
0.5

3
veh/time step, x̄i = 160 veh/cell, Cmax

i = 20 veh/time step.
[R =?]. Performance of the MPC-MHE controller is evaluated in terms of throughput, for different
C; throughput is defined as the maximal element in (I−R)−1λ as throughput.

10
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Figure 3: Traffic evolution under maximal demand with various numbers of
missing sensors

We investigate the ability of the traffic flow under MPC-MHE control to maintain throughput
set to 19.9 veh/time step that is closed to Cmax. As shown in Figure 3, with missing sensors, the
controller is still able to maintain the throughput. For performance in terms of the total number
of vehicles, full information provides a lower bound on the performance. As the number of missing
sensors increases, the performance becomes worse but still significantly better than no control case.

4.5 Technical Results

In this section, we collect technical results to be used later in the proofs.
The following strictly monotone property of the dynamics in (3) is proven in [16].

Lemma 1 For any control sequence u(t1 : t2 − 1) and mainstream states x◦,m,1 ≺ x◦,m,2, we have
φt2,mt1

(x◦,m,1, u(t1 : t2 − 1)) ≺ φt2,mt1
(x◦,m,2, u(t1 : t2 − 1)) for all t2 ≥ t1.

Definition 1 A set X is said to be closed with respect to componentwise maximization if the fol-
lowing implication holds: x1, x2 ∈ X =⇒ max{x1, x2} ∈ X, where max is elementwise maximum.

The following result is straightforward, whose proof can be found in [19].

Lemma 2 Let set X be compact and closed with respect to componentwise maximization. Then,
there exists a unique x̂ ∈ X such that x̂ ≥ x for all x ∈ X.

We call such a element x̂ the maximal element in the set X.

4.6 Proof of Proposition 1

It is sufficient to provide proof for the special case when x̄r = 0. Following Proposition 2 and
Lemma 1, it suffices to show that the set Ũt1:t2(T, 0; x̂◦,m) is not empty. Consider the following
control policy:

ui(t) =





0, ∃ j ∈ [I] s.t. xmj (t) > xcrit
j

min{xr1(t) + λ1, v1 x
crit
1 }, i = 1, & xm(t) ≤ xcrit

min{xri (t) + λi, vix
crit
i − βi−1vi−1xmi−1(t)}, i ∈ [2 : I], & xm(t) ≤ xcrit

(15)
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This control policy first steers the mainline to uncongested regime, i.e., to [0, xcrit], in finite
time by stopping inflow into the mainline altogether. Therefore, without loss of generality, one
can assume that the initial condition is in [0, xcrit]. From such an initial condition, we now show
that, under the control policy in (15), [0, xcrit] is positively invariant. For i = 1, (15) implies
that u1(t) ≤ v1x

crit
1 . Combining this with xcrit

1 = xcrit
1 + v1x

crit
1 − v1x

crit
1 , xm1 (0) ≤ xcrit

1 , and
Lemma 1, gives xm1 (1) ≤ xcrit

1 . For i ≥ 2, (15) implies u(0) ≤ vix
crit
i − βi−1vi−1xmi−1(0). Therefore,

xcrit
i ≥ xcrit

i + βi−1vi−1x
m
i−1(0)− vixcrit

i + ui(0) ≥ xmi (0) + βi−1vi−1x
m
i−1(0)− vixmi + ui(0) = xmi (1).

We now show that on-ramp queue lengths are steered to zero in finite time, and that the on-ramp
queue lengths remain zero thereafter. Let L(t) := {i ∈ [I] : xri (t) ≥ vixcrit

i − βi−1vi−1xmi−1(t)− λi}.
For i 6= L(t), xri (t + 1) = xri (t) + λi − ui(t) = xri (t) + λi − (xri (t) + λi) ≡ 0, i.e., once an on-ramp
is outside L(t) it stays there and its queue length reaches zero and stays there in at most one time
step.

For i ∈ L(t), ui(t) = vix
crit
i − βi−1vi−1xmi−1(t) ≥ vix

crit
i − βi−1vi−1xcrit

i−1(t) = [(I −R)f(xcrit)]i.
Combining this with λ = (I−R)xunc(λ), (1) gives:

∑

i∈L(t)

xri (t+ 1) ≤
∑

i∈L(t)

xri (t) + 1
> (I−RL(t)

) (
fL(t)(x

unc(λ))− fL(t)(xcrit)
)

≤
∑

i∈L(t)

xri (t)− |L(t)| min
i∈L(t)

[1>(I−R)]i · [
(
f(xcrit)− f(xunc(λ)

)
]i (16)

where 1 is vector of all ones, RL(t) is the sub-matrix ofR corresponding to the rows/columns in L(t);
similarly fL(t)(xunc(λ)) and fL(t)(xcrit) are the sub-vectors of f(xunc(λ)) and f(xcrit), respectively,
corresponding to entries in L(t). The entries of f(xunc(λ))−f(xcrit) are all negative, and the entries
of RL(t) are all strictly less than one. (16) implies that the sum of queue lengths on ramps in L(t)
is strictly decreasing and the rate of decrease is bounded away from zero. Therefore, L(t) becomes
empty in finite time. Combined with the earlier conclusion that queue lengths on ramps not in L(t)
go to zero and stay at zero in at most one time step gives the desired result.

4.7 Proof of Proposition 2

The proposition follows once we show that x̂◦,m is the maximal element of X ◦,m. This is because
Ũt1:t2(T ; x̂◦,m) ⊆ Ut1:t2(T ) then follows from the strict monotonicity property in Lemma 1.
X ◦,mt1:t2 is compact by definition in (7). Therefore, following Lemma 2, we just need to show that

X ◦,mt1:t2 is closed with respect to componentwise maximization. Consider x◦,m,1 ∈ X ◦,mt1:t2 , x◦,m,2 ∈
X ◦,mt1:t2 , x◦,m,1 6= x◦,m,2. Let x◦,m := max{x◦,m,1, x◦,m,2} be the elementwise maximum. We first

show by induction on t that the trajectory φtt1

([
x◦,m

xr(t1)

]
, u(t1 : t− 1)

)
≡ xm(t) satisfies (5) for

t = t1, . . . , t2. Let the notations xm,1(t) and xm,2(t) be defined similarly.
For a cell i with ci,i 6= 0, we have yi(t1) = ci,ix

m,1
i (t1) = ci,ix

m,2
i (t1), giving x

m,1
i (t1) = xm,2i (t1) =

xm(t1), where the last equality follows from the definition of xm. Therefore, (1) gives:

xmi (t1 + 1) =xmi (t1) + min{βi−1vi−1xmi−1(t1), wi(x̄i − xmi (t1)), βi−1C
max
i−1 }

−min{vixmi (t),
wi+1

βi
(x̄i+1 − xmi+1(t1)), C

max
i }+ ui(t1)

Since ci,ix
m,1
i (t1 + 1) = ci,ix

m,2
i (t1 + 1), we have xm,1i (t1 + 1) = xm,2i (t1 + 1) and therefore,

12



following (1):

min{βi−1vi−1xm,1i−1(t1), wi(x̄i − xm,1i (t1)), βi−1C
max
i−1 } −min{vixm,1i (t1),

wi+1

βi
(x̄i+1 − xm,1i+1(t1)), C

max
i }

= min{βi−1vi−1xm,2i−1(t1), wi(x̄i − xm,2i (t1)), βi−1C
max
i−1 } −min{vixm,2i (t1),

wi+1

βi
(x̄i+1 − xm,2i+1(t1)), C

max
i }

(17)
Following Assumption 1, let ci−1,i−1 6= 0, i.e., xm,1i−1(t1) = xm,2i−1(t1); the alternative case of ci+1,i+1 6=
0, i.e., xm,1i+1(t1) = xm,2i+1(t1) can be handled similarly. Using xm,1i (t1) = xm,2i (t1) in (17), we have
that

min{vixm,1i (t1),
wi+1

βi
(x̄i+1 − xm,1i+1(t1)), C

max
i } = min{vixm,2i (t1),

wi+1

βi
(x̄i+1 − xm,2i+1(t1)), C

max
i }

= min{vixmi (t1),
wi+1

βi
(x̄i+1 − xmi+1(t1)), C

max
i }

where the last equality again follows from the definition of xm, since xm,1i (t1) = xm,2i (t1) = xm(t1)

and wi+1

βi
(x̄i+1−xmi+1(t1)) is the minimum of wi+1

βi
(x̄i+1−xm,1i+1(t1)) and

wi+1

βi
(x̄i+1−xm,2i+1(t1)). There-

fore, (17) is equal to min{βi−1vi−1xmi−1(t1), xi(x̄i−xmi (t1)), βi−1C
max
i−1 }−min{vixmi (t1),

wi+1

βi
(x̄i+1−

xmi+1(t1)), C
max
i }. Following (1), this implies that xm,1i (t1+1) = xm,2i (t1+1) = φt1+1

t1
(xmi (t1), u(t1)) =:

xmi (t1 + 1).
For a cell i with ci,i = 0, following Assumption 1, we have ci+1,i+1 6= 0 and ci−1,i−1 6= 0. Fol-

lowing similar analysis as above, these respectively imply that xm,1i+1(t1) = xm,2i+1(t1) = xmi+1(t1)

and xm,1i−1(t1) = xm,2i−1(t1) = xmi−1(t1), and hence fi(x
m,1(t1)) = fi(x

m,2(t1)) = fi(x
m(t1)) and

fi−1(x
m,1(t1)) = fi−1(x

m,2(t1)) = fi−1(x
m(t1)) respectively. Therefore, xmi (t1 + 1) = xmi (t1) +

βi−1fi−1(x
m(t1))−fi(xm(t1)) = max{xm,1i (t1), x

m,2
i (t1)}+βi−1fi−1(xm(t1))−fi(xm(t1)) = max{xm,1i (t1+

1), xm,2i (t1 + 1)} ≤ x̄i.

4.8 Proof of Theorem 1

For every input sequence û(t : t+ T − 1) ∈ Ut−L:t(T ), the maximization problem in (10):

max
x◦,m∈X ◦,m

t−L:t

J(x◦,m, û(t : t+ T − 1)) (18)

admits a unique solution x◦,m,∗ which is the maximal element of X ◦,mt−L:t. This is because every
other x◦,m ∈ X ◦,mt−L:t satisfies that x◦,m ≺ x◦,m,∗, which implies that φs,mt−L(x◦,m, u(t−L : t− 1), û(t :
s− 1)) ≺ φs,mt−L(x◦,m,∗, u(t− L : t− 1), û(t : s− 1)) for all s ∈ [t− L : t+ T ] according to Lemma 1.
Since l and b are positive, this then implies J(x◦,m, û(t : t+ T − 1)) < J(x◦,m,∗, û(t : t+ T − 1)).

Let û∗(t : t+ T − 1) be an optimal solution to the minimization problem in (10):

min
û(t:t+T−1)∈Ut−L:t(T )

J(x◦,m,∗, û(t : t+ T − 1))

Therefore, J∗ = J(x◦,m,∗, û∗(t : t+ T − 1)). Since x◦,m,∗ is the unique optimal solution in (18),

J(x◦,m,∗, û∗(t : t+ T − 1)) = max
x◦,m∈Xm

J(x◦,m, û∗(t : t+ T − 1))
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4.9 Proof of Theorem 2

The proof is in two steps:

1. Consider the trajectory
{
x̂(t) :=

[
x◦,m,∗(t)
xr(t)

]
: t ≥ 0

}
constructed from the solution to (10).

This x̂(t) is a trajectory of the nominal closed-loop system consisting of (3) in feedback with
the state feedback MPC controller corresponding to the minimization problem in (11).

2. The value function in (11) possesses a dissipativity-like property and serves as an input-to-
state Lyapunov function for the nominal closed-loop system. The input-to-state stability of
this nominal system then implies input-to-state stability of the closed-loop system consisting
of (3), (5) in feedback with the output-feedback MPC-MHE controller in (10).

We now prove these two claims.
Step 1: Theorem 1 implies that there exists a unique maximal element, say x◦,m,∗(t + 1), in

X ◦,mt+1:t+L+1. Moreover, (12) implies that x̃◦,m ∈ X ◦,mt:t+L (cf. Remark 3). We now show that in fact
x̃◦,m is the unique maximal element x◦,m,∗(t) of X ◦,mt:t+L. Suppose not. Therefore, x̃◦,m ≺ x◦,m,∗(t).
Lemma 1 then implies that x◦,m,∗(t+1) = φt+1

t (x̃◦,m, u(t)) ≺ φt+1
t (x◦,m,∗(t), u(t)), which contradicts

that x◦,m,∗(t + 1) is the unique maximal element in X ◦,mt+1:t+L+1. Therefore, x̃◦,m = x◦,m,∗(t) and
x◦,m,∗(t+1) = φt+1,m

t (x◦,m,∗(t), u(t)). One can continue along these lines to show by induction that
x◦,m,∗(t) = φt,mt−L(x◦,m,∗(t− L), u(t− L : t− 1)).

Since x◦,m,∗(t−L) is the unique maximizer in (11), u(t) can be equivalently obtained by solving

the minimization in (11) for state x◦,m,∗(t). In other words, the sequence x̂(t) :=

[
x◦,m,∗(t)
xr(t)

]
, t ≥ 0,

can be interpreted as a trajectory of the closed-loop system consisting of (3) in feedback with
state-feedback MPC controller defined by the minimization problem in (11).

Step 2: We now analyze input-to-state stability of the nominal closed-loop system. Let x̂(s), s ∈
{t+2, . . . , t+T +1} be the state values starting from x̂(t+1) given control sequence û(t+1 : s−1).
(13) implies that there exists ũ(t+ T ) such that

b>φt+T+1
t+T (x̂(t+ T ), ũ(t+ T ))− b>x̂(t+ T ) ≤ −l>x̂(t+ T ) + η>ũ(t+ T ), ∀ x̂(t+ T ) ∈ Xf (19)

Recall from Remark 2 that there exist û∗(t : t+T−1) and û∗(t+1 : t+T ) such that, respectively,

V ∗(x̂(t)) = V (x̂(t), û∗(t : t+ T − 1))

V ∗(x̂(t+ 1)) = V (x̂(t+ 1), û∗(t+ 1 : t+ T )) ≤ V (x̂(t+ 1), û∗(t+ 1 : t+ T − 1), ũ(t+ T ))
(20)

where the last inequality follows from the feasibility of {û∗(t + 1 : t + T − 1), ũ(t + T )}. This is
because û∗(t : t+T − 1) ∈ Ut−L:t−1(T ) and therefore x̂(t+T ) ∈ Xf ; x̂(t+T + 1) ∈ Xf then follows
from (13). (20) implies

V ∗(x̂(t+ 1))− V ∗(x̂(t)) ≤ V (x̂(t+ 1), û∗(t+ 1 : t+ T − 1), ũ(t+ T ))− V (x̂(t), û∗(t : t+ T − 1))

≤ b>φ(x̂(t+ T ), ũ(t+ T ))− b>x̂(t+ T ) + l>x̂(t+ T )− l>x̂(t)

≤ −l>x̂(t) + η>λ

where the last inequality follows from (19). [20, Theorem 2.5] then implies that the nominal closed-
loop system is input-to-state stable with respect to λ, i.e., (14) holds true.

Recall that the state of the nominal system, x̂(t) is the maximal element in X ◦,mt−L:t which also
contains the state x(t) of the actual system. That is, x̂(t) ≥ x(t) for all t ≥ 0. Moreover, it
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is straightforward to see that the MPC-MHE controller generates the same control signal as the
state-feedback MPC controller. Therefore, Lemma 1 implies that the nominal closed-loop system is
always an upper bound for the closed-loop system with the MPC-MHE controller, and hence (14)
is true.

5 Conclusion and Future Work

In this project, we adopted the MPC-MHE framework to design an output feedback ramp meter-
ing control. For a line network modeled by the Cell Transmission Model, we provided sufficient
conditions for input-to-state stability. There are several avenues for further research. It will be in-
teresting to extend the results to general network configuration, other output models, general traffic
flow models, and to other estimation techniques such as particle filtering and extended Kalman fil-
ter, as well as to estimation techniques specifically developed for traffic flow models, e.g., see [21–23].
This work could be thought of as a first step towards data-driven feedback traffic flow control with
provable guarantees. Therefore, a natural next step could also be to study the model-free setting,
e.g., in the spirit of [24]. Finally, it would be of interest to explore spatial sparsity of the dynamics
to investigate sparsity in the structure of output feedback controller, along the lines of our recent
work on MPC-based traffic flow control [25].

6 Implementation

Not applicable.
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8 Data Management Plan

Products of Research

No new data was collected for this project. Only simulation data was generated.
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Data Format and Consent

All the simulations were done in Matlab.

Data Access and Sharing

The input/output data for the simulations in this report is available at https://viterbi-web.
usc.edu/~ksavla/code.html.

Reuse and Redistribution

The data can be reused freely for non-commercial purposes. Its usage, in original or after modifi-
cation, in publications is to be done with due acknowledgement to the authors of this report and
by citation of relevant publications by the authors.
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