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Introduction and Background 

Crowdsourcing is emerging as a powerful tool in providing possible solutions to problems that are 

traditionally expensive to solve due to immense data collection needs (Brabham D.C., 2008; 

Chatzimilioudis G., 2012; Gao H., 2011). Crowdsourcing refers to the technique of gathering 

opinions and information from the crowd to “find solutions which otherwise would be hard or 

impossible to resolve” (Ali et. al, 2012). Therefore, when used effectively, crowdsourcing can use 

the public’s intelligence and skills to solve complex issues (Nurdden et. al, 2007; Magtoto et. al, 

2012; Misra et. al, 2014). The collection of information through crowdsourcing is often facilitated 

by social media platforms such as Twitter, Facebook etc. (Alvaro et. al, 2015). There are different 

types of crowdsourcing for different tasks for example; crowdfunding, crowdsourcing design, 

microtasks etc. The phrase crowdsourcing was “framed by Jeff Howe in the computer magazine 

Wired where crowdsourcing for him meant "the new pool of cheap labor: everyday people using 

their spare resources to create content, solve problems” (Nurdden et. al, 2007; Howe, 2006). As 

worded in Crowdsourcing Week, “Crowdsourcing is the practice of engaging a ‘crowd’ or group 

for a common goal often innovation, problem solving, or efficiency, powered by new technologies, 

social media and web” (Brabham, 2008) which is the same definition from google and any other 

website only phrased differently. Currently, in both the fields of Intelligent Transportation Systems 

(ITS) and traffic research, the possible uses for crowdsourcing has begun to receive attention 

(Santani et. al, 2015; Ali et. al, 2012; Juhlin, 2010; Ostergren M., 2005). Other possible avenues 

in which crowdsourcing can be of great use could include smart parking, ridership data, transit 

troubleshooting, road condition monitoring and assessment, urban traffic planning and 

management, and many other issues involving big data (Ferster et. al, 2017; Wang et. al, 2016; 

Zheng et. al, 2016; Sun et al., 2017). 

With the advent of Big Data, mobile applications related to traffic information and 

communications technologies have seen a surge, however, with missing developments in artificial 

intelligence needed to cause forward looking solutions to smart freight needs (Langer and 

Vaidyanathan, 2014). Social media and mobile applications provide valuable platform for state 

DOTs in collection and sharing real time data on traffic congestion, incidents and weather impacts 

(Adler et. al., 2014). Real time data-sharing and collection is made possible due to the 

“crowdsourcing” nature of social media - which a recently published Federal Highway 
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Administration (FHWA) report cites as an emerging strategy to address the gap between mobile 

users and traffic management agencies (Mizuta et. al, 2013).  Crowdsourcing refers to a 

‘distributed problem-solving model’ soliciting solutions from crowd of undefined size 

(Chatzimilioudis and Zeinalipour-Yazti, 2013). Crowdsourced data primarily comes from social 

media, however, in a raw format which need to be optimized in collection and dissemination for 

understanding the traveling public. With no roadway infrastructure needed for data collection in 

crowdsourcing, the technology is considered to be one of the top trends by Transportation 

Management Centers (TMCs) for coordinating their responses to traffic congestion and incidents 

in real time (Mizuta et. al, 2013).  

Smart Freight Mobility has been the research spotlight under a joint modal ‘Smart 

Roadside’ program between the FHWA and Federal Motor Carrier Safety Administration 

(FMCSA) (Smart Roadside, 2017).  The program encompasses technologies for enhanced roadside 

condition and traffic information-sharing with commercial vehicle for route planning and 

improved access to intermodal ports, urban pick-up, and delivery locations that are crucial to the 

missions of the U.S. Department of Transportation (USDOT). The vision underlined under this 

program is one in which commercial vehicles, highway facilities, enforcement resources, 

intermodal facilities, and other modes on the transportation system collect and share data 

seamlessly in order to improve freight’s operational efficiency and mobility – which this proposed 

research identifies as the “smart freight”.  

The contribution of crowdsourcing in improving traffic operational efficiency and logistics 

in real time is evolving rapidly and qualitatively, creating the need to develop models that 

characterize smart freight mobility. Therefore, this research develops such analytical models that 

leverage both crowdsourced data on traffic conditions and data such as commodity flows, fuel 

consumption etc. of conventional freight to design operations of a smart freight system.  

The role of social media and crowdsourcing in transportation applications is rapidly 

evolving (Misra et. al., 2014, Ali et. al, 2012).  The primary sources of transportation-related 

crowdsourced data - i) social media, ii) mobile applications, and iii) connected vehicles facilitate 

this evolution which we know as Big Data sources in transportation. Subsequently, crowdsourcing 

is becoming popular amongst several transportation agencies for real-time road condition 

assessment and information sharing with road users. Some states, including California, are already 

utilizing transportation-related crowdsourced data, anonymous in nature, to provide information 
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to citizens and drivers about road conditions, congestion and closures under the Connected 

Citizen’s Program (Caltrans Press Release, 2017). This two-way real-time information sharing 

about California’s roadways provided by Caltrans' QuickMap gives drivers more power to plan 

their commutes and trips (Caltrans' QuickMap, 2017).  

Further, in California, the Traffic Management Teams (TMTs) coordinate closely with 

Transportation Management Centers (TMCs) for orderly flow of traffic impacted by unusual or 

unexpected traffic conditions caused by an incident or an event on roadway (Traffic Management 

Team, 2017). Crowdsourcing as an information sharing platform supplements and supports TMC’s 

real time traffic operations and management needs with wide coverage and low-cost data 

availability that are easily obtained from the outside transportation community. Although critically 

beneficial, crowdsourcing has been rarely studied as an influence on freight truck operations vital 

for the economy. As the congestion on highway continue to grow, dependency on efficient 

information and communications technology through crowdsourcing could provide smart freight 

mobility solutions. Challenges particularly exist in reducing fuel consumption, emissions, safety, 

delays and ton-miles traveled without sacrificing freight performance. Other state transportation 

agencies such as the Iowa DOT monitors and responds to social media outlets round the clock 

directly from their Transportation Operations Center (TOC). Utah Citizen Reporting Program 

allows citizens to report road conditions for Utah DOT, and the District of Columbia DOT has 

deployed real-time data mining on Twitter feeds for sharing traffic incident information (Adler et. 

al, 2014).  

 

Motivation  

There are existing crowdsourced-based applications such as Waze which provide navigational 

services by collecting information from app users (Terdiman, D., 2018). However, an app like the 

Waze cannot be used for performing simulations helpful in determining overall performance of a 

transportation system. On the other hand, as evident through preliminary literature reviews, several 

states in the United States have been successfully using crowdsourced data applications for 

monitoring and enhancing transportation operations – however, not specifically for freight which 

plays a critical role in sustaining nation’s economic competence. Moreover, as there have been 

several ‘smart and connected communities’ initiatives from Federal programs that require 

foundational research and transitioning into scalable and replicable Smart City approaches (Smart 
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and Connected Communities Framework, 2018), contribution of Smart Freight mobility will be 

the key. One such way would be to allow freight drivers and carriers access to downstream 

congestion on their path in advance. Thus, allowing flexibility in detouring and rerouting in 

reaching their destination on time. Application of emerging technologies in the Intelligent 

Transportation Systems (ITS), such as the connected vehicle technology (CVT) will drive the 

success of smart freight. However, at present, the knowledge and application of these technologies 

is scanty or at quite an early stage for the freight industry.  

This research demonstrates an important application of emerging technologies (such as 

crowdsourcing) into freight transportation and logistics. Efficient crowdsourcing-based strategies 

could be developed that can be improve communication among trucks, avoid congestion points 

along routes and minimize congestion. This research also demonstrates the level of efficiency that 

can be achieved in reducing congestion, assist in routing and further  

Therefore, this proposed research is a step towards filling this gap in applications of 

crowdsourcing technology to the development of a smart freight system.  The model presented in 

this paper aims to show some insights on leveraging crowdsourced information on downstream 

traffic conditions to improve a freight system’s performance.  

 

Methodology 

The methodology derived in this research can be useful within traffic simulation software packages 

to enhance both passenger and truck freight operations, and in evaluating impacts of technologies 

such as CVT which relies on crowdsourced traffic information.  

Probabilistic models describing detour maneuvers of trucks subscribed to crowdsourced 

information of a downstream congestion have been developed. The location of detour maneuvers 

is chosen close to an exit ramp of a freeway by incorporating the following procedures:  

 

1) Enumerating all possible states represented by vehicle presence around the exit ramp 

location, 

2) Determination of ‘Good’ states and ‘Bad’ states.  

3) Computing probability of transitioning from state to state (each transition taking an 

assumed time of 2 seconds), and  



7 
 

4) Computing probability of exiting through the off ramp to use a less congested route.  

 

In this paper, a conceptual framework is developed for enhancing mobility of a system of freight 

trucks termed as ‘smart freight’ which have an improved mobility by being able to detour to avoid 

a downstream congestion on their path. The technique of crowdsourcing is applied to facilitate 

lane changes and detours using exit ramps for freight trucks. This research involves research 

methodology will consist of developing stochastic model(s) based on Markov chains. Markov 

chains have wide applications in freeway traffic congestions. In addition, these encompass 

defining the stochastic process and the definition follows from Kulkarni (2016).  Consider a system 

at discrete time points n = 0, 1, 2, ... and so on, with Xn being the state of the system at time n. 

Thus, { }, 0nX n ≥ is a discrete-time stochastic process with a countable state-space S as {0, 1, 2, 

…}. With a fixed value of n as the present time, Xn is the present state of the system. Hence, 

{ }0 1 1, , , nX X X − is the past of the system and { }1 2, ,n nX X+ +  is the future of the system. 

Transition of the system from a state i to another state j occurs with nX i= and 1nX j+ =  from time 

n to n+1. Markov property states that given the present state of the system, the future state of the 

system is independent of the system’s past state.  This property has several applications for a 

system with the future only dependent on the present state of the system which contains 

information needed to probabilistically predict the future.  Markov property exhibited by the 

system defined above is called a discrete-time Markov chain (or DTMC) and is a stochastic process 

{ }, 0nX n ≥ with countable state-space S if for all n ≥ 0, nX S∈  and ,i j S∈ . Thus, for a DTMC 

( ) ( )1 1 2 0 1| , , , , |n n n n n nP X j X i X X X P X j X i+ − − += = = = = .    

There are several other properties of DTMC which are relevant for applicability in this 

research. These are discussed as follows: 

 

I. Time Homogeneous: A DTMC is said to be time homogenous when it is in a state i at time n 

and jumps to state j at time n +1 with probability pi,j for all values of n. Thus,  

 

( )1 ,|n n i jP X j X i p+ = = =  
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Consider state space { }1,2, ,S m=  with m being the last finite state of the DTMC, the one-step 

transition probability matrix (P) is: 

 

1,1 1, 1 1,

2,

1,1

,1 , 1 ,

m m

m

m

m m m m m

p p p
p

P
p
p p p

−

−

−

 
 
 =
 
 
 



  

  



 

 

II. Stochastic Matrix: The transition probability matrix, P, for the DTMC defined above has the 

following stochastic property if: 

 

i. All the elements on each row of the matrix P are non-negative, i.e. , 0i jp ≥   for all   

,i j S∈ , and 

ii. The sum of all the elements on each row of the matrix P is equal to 1, i.e. 1ij
j S

p
∈

=∑   for 

all  i S∈ .  

Based on the above definitions, if initial distribution of X0 is known, such that ( )0 0 0A P X i= = ,  

0i S∈ the finite dimensional joint probability mass function ( )0 0 1 1, , , n nP X i X i X i= = = for the 

DTMC is expressed as:  

 

( )
0 1 1 2 10 0 1 1 0 , , ,, , ,

n nn n i i i i i iP X i X i X i A p p p
−

= = = =   

 

III.  Steady State Property: Based on the transition probability ,i jP , the steady state properties of 

the DTMC is expressed as:  

 

( ),lim
n

i j jn
P π

→∞
= , with jπ being the steady state probability.  
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A DTMC { }, 0nX n ≥ with static space S, transient probability matrix ,i jP that is irreducible is also 

positive recurrent if and only if there exists a unique solution to ( ),
1

n

j i i j
i

Pπ π
=

=∑ .  

 

DTMCs have been used in several real-life situations such as genomics, genetics, genealogy, 

finance, manpower planning etc. (Kulkarni, 2016)  

 

DTMC Example 

Consider a DTMC { }, 0nX n ≥ with state-space { }1,2,3 and transition probability matrix ,i jP as: 

 

,

0.1 0.6 0.3
0.4 0.5 0.1
0.3 0 0.7

i jP
 
 =  
  

 

 

The transition diagram for the above DTMC example is shown in Fig. 1. 

 

 
 

Figure 1: Transition diagram for the example DTMC 
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Assume that the initial probability distribution of the states is known, and is given by:  

 

A = [0.1  0.2  0.7] 

 

Thus, the joint probability mass function for the DTMC expressed by ( )2 12, 3P X X= = can be 

computed as: 

  

( ) ( ) ( )
3

2 1 2 1 0 0
1

3

,3 3,1
1

1 1,3 3,1 2 2,3 3,1 3 3,3 3,1

1, 3 2, 3 | .

0.1 0.3 0.3 0.2 0.1 0.3 0.7 0.7 0.3
0.009 0.006 0.147
0.162

i

i i
i

P X X P X X X i P X i

A p p

A p p A p p A p p

=

=

= = = = = = =

=

= + +

= × × + × × + × ×
= + +
=

∑

∑
 

  

The probability mass function of the various states of the DTMC after 10th time interval (i.e. 10A
) can be computed using the steady state probabilities such that: 

 

( )10(10)
,. i jA A P=  = [ 0.1  0.2  0.7]. 

100.1 0.6 0.3
0.4 0.5 0.1
0.3 0 0.7

 
 
 
  

= [0.2776    0.3323    0.3900] 

Defining States 

This component of research consists of developing states for DTMC. The states developed in this 

proposed research account for various traffic conditions of the road (such as existing speed, 

density, delay etc.) and particularly applicable for freight trucks. The set-up is shown in Fig. 2 and 

presents the skeleton of the modeling framework.  
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Consider the continuous traffic movement (consisting of both passenger cars and freight 

tucks) along the route segment A-B shown in Fig. 2, with two ramp exits (or route options for 

freight vehicle) as marked along the segment. There is a downstream congestion along the 

segment. With no route changes, the usual route to the intermodal facility goes through the 

congested location; however, with route changes occurring via ramp exit 1 or 2, the freight truck 

could improve its travel time to its destination and thereby, contribute to reduction in the 

congestion.  

In the sketch of Fig. 2, it is conveyed that only those vehicles which receive information 

that are obtained through crowdsourcing benefit from deviations from the usual route. This is 

because the information about the downstream congestion is provided much before to facilitate 

use of the improved route by the freight vehicles via the ramp exits. The crowdsourcing-based 

information can be subscribed by both the passenger car and freight trucks as illustrated in the 

sketch of Fig. 2. Thus, the vehicle (whether a passenger car or freight truck) subscribed to 

crowdsourced information about real-time traffic situation on the highway will have the advantage 

to use ramp exits and find better routes if there is one to avoid an immediate downstream 

congestion. Other vehicles that do not have access to the crowdsourced information will continue 

to proceed towards the congested point. 
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Figure 2: Model set-up for traffic operation on a freeway  
 

 
The modeling framework shown in Fig. 2 requires input data that are real-time 

crowdsourced data on traffic situations and freight data related to usual commodity flow, truck 

tonnage, etc. The model in conjunction with data on fuel consumption per mile and freight tonnage 

will determine efficiency improvements in operations and mobility of smart freight.  

In successfully modeling the application of crowdsourced information to improve freight 

truck routes, the location of the vehicles on the freeway need to be first determined, especially if 

the freight truck is upstream, downstream or nearby the ramp exit. The model of detouring 

developed in this research is represented by on direction of a four-lane freeway close to a ramp 

exit as shown in Fig. 3. The area around the ramp exit is divided into seven zones for the two lanes. 

The length of each zone is fixed (typically175-ft equivalent to 2-second headway for speed limit 

of 60 mph on the freeway). Thus, each zone will have at most only one vehicle (passenger car or 

truck) or none across all the seven zones at any given instant of time.  
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Figure 3:  Simplified representation of the area around exit ramps. 

 

The movement of freight trucks across the six zone-lane pairs with one exit ramp case for the 

seven slots shown in Fig. 3 occur with a series of well-defined probabilities as explained below:   

 

i. PV,1,3 =  Probability of arrival of a vehicle (freight or passenger) at Lane 1 – Zone 3. 

The reference is made to zone with label 6. 

 

ii. PV,2,3 =  Probability of arrival of a vehicle (freight or passenger) at Lane 2 – Zone 3. 

The reference is made to zone with label 7. 

 

iii. PMF,1,2 =  Probability of moving forward of a vehicle (freight or passenger) from Lane 

1 – Zone 3 to Lane 1 – Zone 2. The reference is made to zone with label 4.  

 

iv. PMF,1,1 =  Probability of moving forward of a vehicle (freight or passenger) from Lane 

1 – Zone 2 to Lane 1 – Zone 1. The reference is made to zone with label 2.   

 

v. PMF,2,2 =  Probability of moving forward of a vehicle (freight or passenger) from Lane 

2 – Zone 3 to Lane 2 – Zone 2. The reference is made to zone with label 5.   

 

vi. PMF,2,1 =  Probability of moving forward of a vehicle (freight or passenger) from Lane 

2 – Zone 2 to Lane 2 – Zone 1. The reference is made to zone with label 3.  
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vii. PMF, R =  Probability of moving forward of a vehicle (freight or passenger) from Lane 1 

– Zone 2 to Ramp Exit. The reference is made to zone with label 1. 

 

viii. PLC,1, 1 =  Probability of lane changing of a vehicle (freight or passenger) from Lane 2 

– Zone 2 to Lane 1 – Zone 1.  

 

ix. PLC,2, 1 =  Probability of lane changing of a vehicle (freight or passenger) from Lane 1 

– Zone 2 to Lane 2 – Zone 1. 

 

x. PLC,1, 2 =  Probability of lane changing of a vehicle (freight or passenger) from Lane 2 

– Zone 3 to Lane 1 – Zone 2. 

 

xi. PLC,2, 2 =  Probability of lane changing of a vehicle (freight or passenger) from Lane 1 

– Zone 3 to Lane 2 – Zone 2. 

 

 The above probabilities have been shown in Fig. 4, states developed for the DTMC 

involves the following identification of states represented by vehicle locations around the ramp 

exit of the highway section. 

 

 

 
 

Figure 4: Probabilities of various vehicle movements 
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 States are decided based on the presence of any vehicle and if the vehicle in any of the 

lane-zone pairs have access to crowdsourced information about an existing downstream 

congestion. For example, the sketch in Fig. 5 shows the distribution of vehicles across seven lane-

zone pairs including one slot on the ramp exit. Presence/absence of a vehicle in a given lane-zone 

pair is are denoted by the following notations:  

0 = Empty Lane - Zone pair with no vehicle present. 

1 =  A vehicle present in the Lane - Zone pair and WITHOUT access to crowdsourced information 

about an existing downstream congestion. 

1* = A vehicle present in the Lane - Zone pair and WITH access to crowdsourced information 

about an existing downstream congestion. 

 

 
 
Figure 5: An example state consisting of empty slots (using 0), vehicle ‘without access’ to 

crowdsourced information (using 1) and vehicle ‘with access’ to crowdsourced information (using 

1*). 

  
 Based on the set-up of seven lane-zone pairs with slots and three vehicle situations present 

or absent in each of the slots there are a total of 37 states (= 2187 states) possible for the DTMC 

being studied. A sample of these states is presented in Fig. 6 for illustration purpose corresponding 

to the slot number labels in Fig. 3.  
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Figure 6: Sample of vehicle arrangement for the states across slots 
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 The transition probability matrix is built using the 2187 states identified in Fig. 6. However, 

not all the probabilities for all the 2187 states would be feasible.  See example below in Fig. 7 for 

the four feasible transitions of state 43 to states 383, 384 and 385 corresponding to the DTMC.   

 

 
Figure 7: Illustration of few of the possible feasible transition states for state 43 of the DTMC. 

  

 In the sketch shown in Fig. 7, there is a vehicle in the slots numbered 4, 5 and 6 of state 

43. The freight vehicle in slot 6 is subscribed to crowdsourcing technology and have advance 

information about the downstream congestion.  The other vehicles could be passenger vehicle or 

freight trucks which are not subscribed to any form of crowdsourcing technology and hence, 

continue to move forward along their respective lanes. The states 383, 384 and 385 are three of 

 

Three of the total feasible 
transition states 
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the feasible transition states of state 43 of the DTMC. State 43 transitions to state 383 wherein a 

passenger vehicle or a freight vehicle enters the last two lane-zone pairs with slots 6 and 7. State 

384 has a freight vehicle in slot 7 that has access to crowdsourced information about an existing 

downstream congestion and one vehicle with no access to crowdsourced information. State 385 

has only one vehicle in slot 6 which is a freight truck in slot 6 that has access to crowdsourced 

information on the downstream congestion.    

 Similar to the example discussed above all other feasible and infeasible transition states of 

the DTMC are built as a 2187×2187 sparse matrix. Table 1 presents a section of the sparse matrix 

of some states. ‘0’ denotes an infeasible transition of a state to another state and 1 denote a feasible 

transition in the sparse matrix.   

 
Table 1:  Sample sparse matrix for some state transitions 

 

 

STAT
E 

.

. 
379 380 381 382 383 384 385 386 387 388 389 .

. 
:              

38  0 0 0 0 0 0 0 0 0 0 0  
39  1 1 1 1 1 1 1 1 1 0 0  
40  0 0 0 0 0 0 0 0 0 0 0  
41  0 0 0 0 0 0 0 0 0 0 0  
42  0 0 0 0 0 0 0 0 0 0 0  
43  1 1 1 1 1 1 1 1 1 0 0  
44  0 0 0 0 0 0 0 0 0 1 1  
45  0 0 0 0 0 0 0 0 0 0 0  
46  0 0 0 0 0 0 0 0 0 0 0  
47  0 0 0 0 0 0 0 0 0 0 0  
48  0 0 0 0 0 0 0 0 0 0 0  
:              

 

  

 Of all the 2187×2187 possible transitions of one state to next state only 19,863 transitions 

were found to be feasible. For example, for the given state 43 in Table 1, only nine possible 

transitions of state exist which are feasible. These states are 379, 380, 381, 382, 383, 384, 385, 386 

and 387.   

After 

Before 
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Determination of ‘Good’ states and ‘Bad’ States  

A ‘Good’ state would occur when a freight vehicle which has information of the downstream 

traffic congestion due to crowdsourcing is successfully able to change lane and be able to use the 

ramp exit. For example, all the freight vehicles subscribed to crowdsourced information of 

downstream congestion and positioned as shown in the states 3, 12, 389 and 1015 shown in Fig. 

8, are able to eventually use the ramp exit. Since a state transition occurs with each new time 

interval, the freight truck in Lane 2 – Zone 3 of state 3 will reach the ramp exit in the next two 

time intervals. Similarly, the freight trucks in states 12 and 1015 will reach the ram exit in the 

second time interval.  The freight truck for state 389 will reach the ramp exit in the very next 

time interval. There were a total of 312 good states which were identified for the DTMC. 

 
 
 

 
 

Figure 8: Examples of ‘good’ states of DTMC 

 

A ‘Bad’ state results when a freight vehicle, although having information about downstream 

congestion through crowdsourcing, is unable to do a lane change to reach the ramp exit, and hence, 

is constrained to continue to move forward along the highway. For example, the states 6, 133, 1530 
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and 2080 shown in Fig. 9 illustrate that a freight truck although having access to crowdsourced 

information on downstream congestion will not be able to do a lane change in the next state. The 

lane change is thwarted because there is a vehicle present in Lane 1- Zone 3 of state 6, Lane 1- 

Zone 2 of state 133 and Lane 1- Zone 3 of state 1530 which will move forward to occupy the slot 

in front. For state 2080, the freight vehicle cannot move to the ramp exit although being subscribed 

to the downstream traffic congestion.  There is a total of 720 states which were identified as bad 

states for the DTMC. 

 

 

Figure 9: Examples of ‘bad’ states of DTMC 

Transition Probabilities 

Probabilities for transitioning from one state to another state is computed by taking into 

consideration the following probabilities:  

i. Arrival or non-arrival of a vehicle in slot 6 (Lane 1- Zone3), i.e. PV,1,3 

ii. Arrival or non-arrival of a vehicle in slot 7 (Lane 2- Zone3), i.e. PV,2,3   

iii. Moving forward of a vehicle from one slot to another slot, i.e. PMF,1,1 ,  PMF,1,2, PMF,2,1, 

PMF,2,2 and PMF,R . 

iv. Lane change of a vehicle to another vehicle, PLC,1, 1, PLC,2, 1, PLC,1, 2, and PLC,2, 2.  
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Thus, the product of the above probabilities for each transition of the DTMC from one state to 

another yields a next feasible state with every new transition. Thus, the probability, ρ, to be 

evaluated for possible transition to the next state is given by: 

,1,3 ,2,3 ,1,1 ,1,2 ,2,2 ,2,1 , ,1,1 ,2,1 ,1,2 ,2,2V V MF MF MF MF MF R LC LC LC LCP P P P P P P P P P Pρ = × × × × × × × × × ×  (1) 

Application Example  

An example application of the DTMC model developed in this research is carried out using 

simulation exercise. Data from the transportation network of the Freight Analysis Framework 

(FAF) (FAF Data, 2017) as well as truck route network (Caltrans GIS Data, 2017) are used in a 

Geographical Information System (GIS) format from the Southern California Region.  TAZ 

centroids (as origins) close to San Diego Fwy (I-405 N) and LA Intermodal Facility in Southern 

California (as destination) has been used in the simulation. The simulation is carried out with the 

ramp Exit 24 on I-405 N, merging towards the I-605 N. A congestion zone is artificially created 

downstream this exit point on I-405 N. Data for annual average daily traffic (AADT), both 

passenger and truck, have been obtained from highway data available on the Caltrans website. The 

set-up used for carrying out the simulation is shown in Fig. 10. The length of each zone is 175-ft 

which is equivalent to 2-second headway for speed limit of 60 mph on the freeway, see Fig. 11. 
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Figure 10: Ramp exit used for simulation [Image Source: Google Street View]  
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Figure 11: Simplified set-up for simulation exercise 
 
 

Performance Evaluation with Crowdsourcing 

The performance measure underlying the utility of crowdsourcing was assessed using the number 

of vehicles that were able to avoid downstream congestion with information available of the traffic 

situation in advance. This was carried out using the ‘good’ and ‘bad’ states of the DTMC. The 

transition matrix, P, developed in the process was divided into Good states and Bad states and 

partitioned as follows:  

   
   

GG GB

BG BB

p p
P

p p
 

=  
 

       (2) 

where, pGG is the probability of going from a good state to a good state, pGB is the probability 

of going from a good state to a bad state, pBG is the probability of going from a bad state to a good 

state and pBB is the probability of going from a bad state to a bad state.  The transition matrix P 

defines expressions for conditional probabilities denoting failure of a vehicle to be able to use the 

ramp exit. Table 2 provides input values used for various individual probabilities.  
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Table 2: Probability values used for the DTMC model 

Probability Value(s) 

PV,1,3 Arrival Rates for Lane1-Zone 1: 1800 veh/hr (free flow 
scenario) and 900 veh/hr (congested scenario) 

PV,2,3   Arrival Rates for Lane1-Zone 1: 1800 veh/hr (free flow 
scenario) and 900 veh/hr (congested scenario) 

PMF,1,1, PMF,1,2, PMF,2,1, 
PMF,2,2, and PMF,R 

1 (assuming that a vehicle is not stalled in any lane-zone pair) 

PLC,1, 1, PLC,1,2,  
PLC,2, 1, and PLC,2, 2 

0.3 (denotes lane change is not allowed) and 0.8 (denotes lane 
change is enforced).  

The probability PLC,1, 1 and PLC,2, 1, are complementary to each 
other as the lane change from lane 1 – zone 2 to lane 2 – zone 1 
and lane change from lane 2 – zone 2 to lane 1 – zone 1 cannot 
occur simultaneously, as this can create collision situation for 
two vehicles. Similarly, PLC,1,2, and PLC,2,2 are also 
complementary to each other because of the above reasons for 
lane changes occurring from lane 1 – zone 2 to lane 2 – zone 2, 
and vice-versa.  Therefore, PLC,1, 1 = (1 - PLC,2, 1) and PLC,1,2 = (1 
-  PLC,2,2) 

 

Results 

Observation times for the simulation output are assumed to vary from 5 minutes to 30 minutes 

with an increment of 5-minute interval. Both free-flow conditions and congested situations are 

analyzed separately. The traffic speed in the lane-zone pairs constructed for the I-405 & I-605 

DTMC model for simulation are assumed to be 60 mph for the free-flow situation and 30 mph for 

the congested situation. There are hundred replications (considered to be large enough) for each 

simulation setting.  

Simulation results for the DTMC model built in this research show that with crowdsourced 

information about the downstream traffic congestion, an increased number of freight trucks would 

be able to exit the ramp for I-605 and find alternate routes with the exit to reach to the destination.  

The output result for the free-flow traffic is shown in Fig. 12 which indicates an increasing trend 

in the number of freight trucks (which are subscribed to crowdsourced information about 
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downstream traffic congestion) and the simulation observation times. It is noted that for the 

simulation with 5 min, 10 min, 15 min, 20 min, 25 min and 30 min time intervals, the count of 

freight trucks which had information about the downstream traffic congestion and used the ramp 

exit were 3393, 6785, 10176, 13419, 16788 and 20142, respectively.   The total number vehicles 

(both passenger and freight) that entered the lane-zone pairs were 10095, 20288, 30406, 40461, 

50488 and 60568, respectively. For congested traffic situations, the number of trucks exiting the 

ramp reduced to 5694, 11453, 17291, 23275, 28139 and 35647 for 5 min, 10 min, 15 min, 20 min, 

25 min and 30 min time intervals, respectively. Thus, on an average, almost 33% of total vehicles 

(passenger and freight trucks) which are freight trucks subscribed to crowdsourcing information 

could use the ramp exit to avoid downstream congestion. This is applicable for both when the 

traffic within the lane-zone pair is free flow or congested. It was observed that approximately 16% 

of vehicles which are freight trucks and subscribed to crowdsourced information on downstream 

congestion could not make it through the ramp exit. The reason was due to limitations in lane 

change movements of these freight trucks.  The percentage of freight trucks which could not exit 

the ramp increased from 16% to almost 50% without any subscription to crowdsourced 

information about the downstream congestion. This was expected since there was no subscription 

of trucks to avoid progressing towards the congested point of the freeway. 



26 
 

 

 

Figure 12: Simulation results indicating improvement in freight truck routing with crowdsourced 
information 

 

Concluding Remarks  

There are existing crowdsourced-based applications such as Waze which provide navigational 

services by collecting information from app users. However, there are limited use of an app like 

the Waze limit its usage in simulations required to determine performance of freight operations. 

Preliminary literature reviews, several states in the United States have been successfully using 

crowdsourced data applications for monitoring and enhancing transportation operations – 

however, not specifically for freight which plays a critical role in sustaining nation’s economic 

competence. This research involves research methodology will consist of developing stochastic 
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model(s) based on Markov chains to improve freight as well as passenger operations. Markov 

chains have wide applications in freeway traffic congestions.  

The model developed in this proposed research is sensitive to traffic conditions (such as 

existing speed, density etc.). The model is applicable for freight trucks and can be used to indicate 

the duration of congestion for a stop-and-go traffic situation on the highway. The vehicle (whether 

a passenger car or freight truck) subscribed to crowdsourced information about real-time traffic 

situation on the highway will have the advantage to use ramp exits and find better routes if there 

is one to avoid an immediate downstream congestion. Alternately, this means that vehicles that do 

not have access to the crowdsourced information will continue to proceed towards the congested 

point.  

The set-up used in the modeling framework requires input data that are real-time crowdsourced 

data on traffic situations and freight data related to commodity flow, truck tonnage, etc. Results 

indicate that of the total vehicles (auto and truck) subscribed to crowdsourcing, freight trucks 

represent approximately 33%.  Trucks subscribed to crowdsourcing information can successfully 

use off-ramps to avoid downstream congestion.  The model output developed in this research can 

also provide estimated savings in fuel consumption per mile and increased movement of freight 

tonnage to quantify the benefits of smart technology.  

Future research involves performing delay analysis with the travel time increase from the 

freight vehicles that add to the downstream congestion. With an example of freight routes, it is 

expected that a truck would avoid a congested point on a route by utilizing crowdsourced 

information. Thus, the volume on the given link of congestion should decrease minimizing that 

link’s travel time based on the standard Bureau of Public Roads (BPR)-type function (Lu et. al, 

2016): 

 

( )40 1 0.15 /a at t Q y = +           (3) 

where, ta denotes the average travel time of the study road segment a, 0
at denotes the free-flow 

travel time, and Q, y are the aggregated traffic flow and road capacity in passenger car units. Thus, 

with decrease in Q or the freight truck flow, there will be observed increase in route mobility and 

resilience due to lowering in travel times. 
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