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8 Introduction

In this project, our objective was to build a comprehensive dynamical framework for traffic flow
over integrated freeway and arterial road networks, develop stability analysis tools for such a
framework, and use these tools to design dynamic traffic signal control, variable speed limit and
ramp metering policy to optimize system efficiency and resiliency, with provable guarantees. Our
control framework builds upon emerging sensing and control architecture, often collectively referred
to as cyber-physical systems in the recent literature. In this report, we present our results on (i)
convex formulations for dynamic traffic assignment to compute optimal variable speed limit control
and ramp metering control, (ii) adaptation and convergence guarantees for distributed optimization
algorithms to compute these controls, (iii) stability analysis of proportionally fair traffic signal
control policies; and (iv) case study for a Los Angeles sub-network developed in PTV VISSIM, to
compare the performance of max pressure and proportionally fair traffic signal control policies in
terms of throughput and average travel time. Our presentation in Section 9 is divided along these
four topics. In the remainder of the current section, we contextualize our work in the context of
prior work.

Dynamic Traffic Assignment (DTA), introduced in [1, 2], has attracted a large amount of
attention by the transportation research community, and has become a standard framework for
control of freeway networks (see [3] for an overview). We focus on System Optimum Dynamic
Traffic Assignment (SO-DTA) that aims at minimizing a system-level cost function over a planning
horizon, subject to realistic traffic dynamics, and the presence of variable speed limits, ramp
metering, and routing control.

The Cell Transmission Model (CTM), originally proposed in [4], is a compelling framework to
simulate realistic traffic dynamics. Variable speed limits, ramp metering, and routing are the most
widely studied forms of control for freeway networks. However, with very few exceptions (e.g.,
see [5]), these control strategies have not been incorporated in DTA formulations. The primary
reason for not incorporating realistic traffic dynamics and control strategies in DTA is that finding
numerical solutions for the resulting optimization problem is in general computationally expensive,
and hence unsuitable for real-time applications. Convexity is a desirable property of optimization
problems that facilitates their fast numerical solution, e.g., using readily available software tools
such as cvx [6, 7].

Rapid advancements in traffic sensing technology have made it possible to use real-time traffic
information in road traffic control. This has opened up the possibility of replacing traditional
fixed-timing traffic signal controllers with adaptive controllers. Classical work on adaptive traffic
signal controller does not provide any guarantees with respect to performance metrics of interest
such as throughput, delay, and robustness to disruptions. Recently, well-known algorithms for
routing in data networks, such as the back-pressure algorithm [8] and its throughput analysis, have
been adapted to the traffic signal control setting, e.g., see [9, 10, 11]. However, these algorithms
require the traffic signal controllers to have explicit knowledge about the turning ratios representing
the route choice behavior of drivers, a requirement that may be impractical in many real-life
applications.

While there has been growing interest recently in developing distributed traffic signal control
for arterial road networks, distributed control or distributed algorithms to compute optimal control
for freeway networks, with provable performance guarantees, has not attracted much attention.

8



9 Body of Report

Network flows [12] provide a compelling framework to model traffic flow over road networks. The
static formulation consists of representing the road network by a directed graph, where the nodes
correspond to traffic intersections and freeway junctions, whereas the directed links represent roads.
Each link is associated with a flow capacity. External flow enters the network through a subset of
nodes called origin nodes (or sources), and the flow leaves the network from a set of nodes called
destination nodes (or sinks). A central problem in the network flow literature is the computation
of the maximal set of inflows under which there exists a feasible flow distribution in the network,
i.e., the one that satisfies link-wise capacity constraints and flow conservation at the nodes. Such
feasible flows can be construed as equilibria for dynamical models for traffic flow over networks.

Dynamical models for traffic flow have been of intense research interest. The salient feature
of these models is to describe the network state in terms of traffic density, and relate other traffic
variables (i.e., flow and speed) through empirical relationships. One such relationship between
flow and density is known as the fundamental traffic diagram. One of the well-known class of
dynamical traffic models are the so-called hydrodynamic models, e.g., see [13], and their discretized
counterparts, e.g., see [14]. Of particular relevance to this project is the cell transmission model [14].
These dynamical models have been fruitfully utilized for prediction and control purposes, primarily
in the context of freeway traffic. While the static network flow formulation is obviously not well-
suited for real-time traffic control, especially in the context of disruptions, its potential usage in
establishing necessary and sufficient conditions for existence of equilibria for dynamical models has
not been well studied yet.

We now describe the key research activities in the next four sub-sections: Sections 9.1 and 9.2
address control of freeway networks, whereas Sections 9.3 and Sections 9.4 address traffic signal
control of arterial networks. Although the formalisms for these two networks, as presented here,
are compatible with each other, their formal integration is topic of ongoing research, and will be
published elsewhere.

9.1 Convexity and Robustness of Dynamic Traffic Assignment for Control of
Freeway Networks

We describe the topology of the transportation network as a directed multi-graph G = (V, E) with
nodes representing junctions and links i ∈ E representing cells. The head and tail nodes of a cell
i are denoted by τi and σi, respectively, so that the cell is directed from σi to τi. One particular
node w ∈ V represents the external world, with cells i such that σi = w representing on-ramps and
cells i such that τi = w representing off-ramps. The sets of on-ramps and off-ramps will be denoted
by R and Ro, respectively. The network topology is typically illustrated by omitting such external
node w and letting on-ramps have no tail node and off-ramps have no head node. (See Figure 1.)
We will use the notation

A = {(i, j) ∈ E × E : τi = σj 6= w}
for the set of all pairs of adjacent (consecutive) cells.

The dynamic state of the network is described by a time-varying vector x(t) ∈ RE whose
entries xi(t) represent the mass (or traffic volume) in the cells i ∈ E at time t. The inputs of
the network are the inflows λi(t) ≥ 0 at the on-ramps i ∈ R. Conventionally, we set λi(t) ≡ 0
for all non on-ramp cells i ∈ E \ R, and stack up all the inflows in a vector λ(t) ∈ RE . The
physical constraints are captured by the demand functions di(xi) and the supply functions si(xi),
returning the maximum possible outflow from cells i ∈ E and the maximum possible inflow in the

9



R
Ro

Figure 1: A multi-origin multi-destination cyclic network.

non on-ramp cells i ∈ E \ R, respectively, as a function of the current mass xi. Conventionally,
we put si(xi) ≡ +∞ at all on-ramps i ∈ R. The demand functions are assumed to be continuous,
non-decreasing, and such that di(0) = 0, while the supply functions are assumed to be continuous,
non-increasing, and such that si(0) > 0, with xjam

i = inf{xi > 0 : si(xi) = 0} denoting cell i’s jam
mass. Throughout, we focus on the case where all demand and supply functions are concave in
their argument, which includes the common case of piecewise affine functions.

When formulating the DTA problems we will assume to be given an initial value x0
i ≥ 0 on

every cell i ∈ E and aim at minimizing the integral of a running cost ψ(x) which is a function of
the entire vector of mass x. We will assume that the running cost function ψ(x) is convex in x,
nondecreasing in each entry xi, and such that ψ(0) = 0. A particularly relevant special case is
when the cost function is separable, i.e., when

ψ(x) =
∑
i∈E

ψi(xi) , (1)

for convex non-decreasing costs ψi(xi) of the mass on the single cells i ∈ E , with ψi(0) = 0. We
will use the following optimization variables, all function of time: xi, yi, and zi stand, respectively,
for the mass on, the inflow in, and the outflow from, cell i ∈ E ; fij stands for the flow between two
contiguous cells i, j ∈ E such that σj = τi; and µi is the the out-flow from an off-ramp i ∈ Ro that
leaves the network. Let T > 0 be the given time horizon.

We first introduce the basic version of the system optimum dynamic network traffic assignment
(SO-DTA) problem that can be formulated as follows

min

∫ T

0
ψ(x(t))dt (2)

such that,
xi(0) = x0

i , i ∈ E , (3)

and for all t ∈ [0, T ],
ẋi = yi − zi , i ∈ E , (4)

yi = λi +
∑
j∈E

fji , zi = µi +
∑
j∈E

fij , i ∈ E , (5)

µi ≥ 0 , fij ≥ 0 , i, j ∈ E , (6)

10



fij = 0 (i, j) ∈ E × E \ A ,
µi = 0 i ∈ E \ Ro ,

(7)

yi ≤ si(xi) , zi ≤ di(xi) , i ∈ E . (8)

Equation (3) prescribes an initial value of the cell mass xi. Equation (4) captures the dynamical
constraints that are derived from the law of mass conservation: the time-derivative of the xi on
a cell equals the imbalance between its inflow yi and its outflow zi. Equation (5) models flow
conservation: it states that the inflow yi in a cell is the aggregate of the external inflow λi and
the flows fji from other cells in the network and, symmetrically, the outflow zi from a cell is the
aggregate of the flows fij to other cells in the network and the outflow µi towards the external
world. The inequalities in (6) enforce non-negativity of the cell-to-cell flows fij and of the external
outflows µi. Observe that, together with (5) and non-negativity of the external inflows λi, equation
(6) implies non-negativity of the cells’ inflows yi and outflows zi as well. Equation (7) captures the
network topology constraints: the latter require that flows fij within the network are possible only
between contiguous cells (τi = σj 6= w), and outflows µi towards the external world are possible
only from the off-ramps. Finally, the inequalities in (8) capture the physical constraints on the
cells: they guarantee that the total inflow yi in a cell does not exceed the supply si(xi), and the
total outflow zi from a cell does not exceed the demand di(xi). Because of the assumption di(0) = 0
and non-negativity of the cell inflow yi, equation (4) implies that the mass xi remains nonnegative
in time, on every cell i ∈ E .

Let us consider an exogenous, possibly time-varying, routing matrix R, which is a nonnegative
E × E matrix satisfying the network topology constraints

Rij = 0 , (i, j) ∈ (E × E) \ A , (9)

and such that ∑
j∈E

Rij = 1 , i ∈ E \ Ro . (10)

The matrix R is to be interpreted as describing the drivers’ route choices, with its entries Rij ,
sometimes referred to as turning ratios, representing the fractions of flow leaving cell i that wants
to go to cell j. Equation (10) then guarantees that all the outflow from the non off-ramp cells is
split among other cells in the network, while equation (9) guarantees that the outflow from cell i
is split among adjacent downstream cells only.

We will consider two routing-constrained DTA problems. The first one, to be referred as the
partially constrained (PC) SO-DTA consists in solving the minimization (2) under the constraints
(3)–(8) and the additional constraint

fij ≤ Rijdi(xi) i, j ∈ E . (11)

The inequality above requires the flow fij from a cell i to a cell j not to exceed a given fraction
Rij of the demand di(xi) on cell i. Intuitively, if we interpret dij(xi) = Rijdi(xi) as the aggregate
demand of vehicles on cell i that want to move from cell i towards cell j, then inequality (11)
constrains the actual flow fij from i to j not to exceed such demand. Observe that (11) is a convex
constraint so that the (PC) SO-DTA remains a convex program. Clearly, the feasible set of the
PC-SO-DTA problem is contained in the one of the SO-DTA problem, which in turn implies that
the cost of an optimal solution of the PC-SO-DTA problem is never smaller than the one of an
optimal solution of the SO-DTA.
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Figure 2: The network used in the numerical study.

The second routing-constrained DTA problem we propose, to be referred as the fully constrained
(FC) SO-DTA consists in solving the minimization (2) under the constraints (3)–(8) and the
additional constraint

fij = Rijzi , i ∈ E . (12)

The interpretation of (12) is that it forces the outflow from cell i to split exactly as prescribed
by the routing matrix R, not only when it coincides with the demand di(xi) (as prescribed by
(11)), but also when it is strictly smaller than that —e.g., when the supply constraint of one of the
downstream links k (with σk = τi 6= w) is satisfied with equality. Note that (12) and (8) jointly
imply (11). Hence, the feasible set of the FC-SO-DTA problem —which is also convex since (12)
is a linear constraint— is a subset of the feasible set of PC-SO-DTA and, a fortiori, of that of the
SO-DTA problem. As an immediate consequence, we have the following inequalities

Ψ∗ ≤ Ψ∗PC ≤ Ψ∗FC , (13)

where Ψ∗, Ψ∗PC , and Ψ∗FC stand for the costs of an optimal solution to the SO-DTA, the PC-SO-
DTA, and FC-SO-DTA, respectively.

Simulations: We solve all the SO-DTA variants in MatLab using the Convex Programming
package cvx [6, 7]. We use the single-origin single-destination network described in [15] and shown
in Figure 2 for our simulations. The scalability of the proposed methodologies to large networks is
addressed via distributed algorithms in Section 9.2, where we show results for a large network 5.
For implementation, we discretize the continuous formulation according to standard practices in
Cell Transmission Models. Time is slotted with sampling time τ = 10 seconds. In all the cells,
demand and supply functions are piecewise affine:

di(xi, t) = min{vixi
Li

, Ci(t)}

si(xi, t) = min{wi(x
jam
i − xi)
Li

, Ci(t)}

where vi, wi, Ci(t), Li and xjami are the free-flow speed, the wave speed, the capacity (at time
t = 1, . . . , n), the length and the jam mass on cell i, respectively. The values of these parameters,
along with number of lanes and length of cells, are specified in Table 1. The units of all parameters,
as well as of inflows, provided below, are chosen in such a way that physical consistency is ensured.
In addition, with the chosen parameters, a vehicle travels along an entire cell in exactly one time
slot at maximum speed, which in the considered scenario is the free-flow speed v. Therefore,
the Courant-Friedrichs-Lévy condition τ maxi vi

mini Li
≤ 1, which is necessary for numerical stability, is

satisfied.
12



Parameter Value

Free-flow speed vi, wave speed wi 50 feet / sec
Length of cell Li 500 feet
Capacity Ci 6`i veh/τ (except 4)
Number of lanes `i 2 for i = 1, 2, 9, 10; 1 otherwise
xjam 10`i veh/ 500 feet

Table 1: Cell parameters.

Scheme Cost

FIFO 281.6
SO-DTA 246
PC-SO-DTA 257.1
FC-SO-DTA 281.6

Table 2: Comparison between optimal cost for the three SO-DTA variants, and the cost for the
system under FIFO rule, for the linear cost criterion.

Vehicles enter the network from cell 1 at rate λ1(t). We consider a setting in which1 λ1(1) = 8,
λ1(2) = 16, λ1(3) = 8 and λ1(t) = 0 for t ≥ 4, with a time horizon of T = 25 steps, and in which
the capacity in the cells is constant except on cell 4, where a bottleneck is simulated by setting
C4(t) = 6 veh/τ for t 6= 5, 6, 7, 8, C4(5) = C4(6) = 0 veh/τ , C4(7) = C4(8) = 3 veh/τ . Exogenous
turning ratios are as follows: R23 = 2/3, R25 = 1/3 and R34 = 2/3, R36 = 1/3, the others being
trivial.

For these values of inflow and link capacities, we computed optimal costs for all the three SO-
DTA variants and the costs associated with a system evolving under FIFO policy with proportional
merge rule. For brevity, we refer to the last model as FIFO. The initial condition for each case
was x(0) = 0. The results for the total traffic volume cost Ψ(1)(x) =

∑
t

∑
i∈E xi(t) are reported

in Table 2, whereas the results for the quadratic cost, Ψ(2)(x) =
∑

t

∑
i∈E x

2
i (t), are reported in

Table 3. The corresponding trajectories for volume of vehicles, xi(t), for a few representative cells
are shown in Figures 3 and Figures 4 for linear and quadratic cost, respectively.

As expected, the SO-DTA, being the least constrained, gives the least cost, the FC-SO-DTA
scheme gives the highest, and the PC-SO-DTA in between, for both linear and quadratic cost
criteria. Moreover, again as expected, the optimal cost under any of the SO-DTA variant is no
more than the cost under FIFO2. This favorable comparison between the optimal costs for the SO-
DTA variants and the FIFO model serves as a motivation to investigate the feasibility of optimal
SO-DTA solutions with respect to FIFO and other realistic traffic dynamics.

Control Design: The control inputs we consider for the FC-SO-DTA consist of a combination
of ramp metering on the on-ramps and variable speed limits on the other cells. On the other hand,
for the SO-DTA and the PC-SO-DTA, we also consider routing controls. We will assume that the

1Inflows are normalized by the onramp length as the dynamics involve the mass of vehicles.
2The results in Figures 3 and 4 also include results for the non-FIFO model, which is formally described in (21)

and (22).
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Figure 3: Trajectories of the number of vehicles on cells 1, 2, 3, 4 for the system under FIFO rule
and for the optimal solutions corresponding to the three variants of SO-DTA, for linear cost.
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Figure 4: Trajectories of the number of vehicles on cells 1, 2, 3, 4 for the system under FIFO rule
and for the optimal solutions corresponding to the three SO-DTA variants, for quadratic cost.

Scheme Cost

FIFO 1930.5
SO-DTA 1393.5
PC-SO-DTA 1537.5
FC-SO-DTA 1595.7

Table 3: Comparison between optimal cost for the three SO-DTA variants, and the cost for the
system under FIFO rule, for the quadratic cost criterion.
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controller has the ability to reduce the demand functions by setting controlled demand functions
in the form

di(xi) = αidi(xi) , i ∈ E \ R (14)

di(xi) = min{di(xi), ci} , i ∈ R (15)

where αi ∈ [0, 1] and ci ≥ 0 are control parameters. In the context of freeway networks, (14)–(15)
can be realized through appropriate setting of speed limits and ramp metering. In particular, for
linear uncontrolled demand functions di(xi) = vixi, formula (14) is equivalent to the modulation
of the free-flow speed vi = viαi, where vi could be interpreted as the maximum possible speed due
to, e.g., safety considerations (Cf., e.g., [16]). On the other hand, (15) corresponds to metering the
maximum outflow from the onramp, which is its demand di(xi), by imposing a maximum value ci
(Cf., e.g., [5]). The queue build-up due to the proposed speed limit control, or reduction of demand
functions, is accommodated in our case due to unbounded queue capacities on on-ramps.

While control of the demand functions as above proves to be sufficient to ensure the feasibility
of the solutions of the FC-SO-DTA with a given exogenous turning ratio matrix R, implementation
of the solutions of the SO-DTA and of the PC-SO-DTA require additional actuation capabilities
that allow for the design of a controlled turning ratio matrix R whose entries are nonnegative and
satisfy the constraints (9) and (10). For consistency in notation, we will let R = R when discussing
implementations of the FC-SO-DTA.

We now discuss the considered DNL models. For transportation systems, the term DNL gen-
erally refers to the modeling of the circular dependance between the network flow propagation
and the link performance (cf., e.g., [17, Chapter 7]). In the specific framework considered here,
such circular dependance is modeled by the differential equation (4), coupled with a functional
dependance

fij = fij(x, α, c, R) , (i, j) ∈ A ,

µk = µk(x, α) , k ∈ Ro

of the cell-to-cell flows and of the external outflows on the cell mass and the control parameters. In
particular, we will focus on DNL models such that the external outflow from the off-ramps always
coincides with their (controlled) demand, i.e.,

zk = µk = dk(xk) , k ∈ Ro ; (16)

and the outflow from every cell coincides with the controlled demand in the free-flow region,
i.e.,

x ∈ F =⇒ zi = di(xi) , ∀i ∈ E , (17)

where F denotes the free-flow region

F :=

{
x ∈ RE+ :

∑
i∈E

Rijdi(xi) ≤ sj(xj) ,∀j ∈ E
}
. (18)

The considered DNL models differ for the way the cell-to-cell flows depend on the cell mass and
on the control parameters in the congestion regime, i.e., when

∑
i∈E Rijdi(xi) > sj(xj) for some

cell j ∈ E . Among the several possibilities, we will consider two specific cases:
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1. the FIFO model
fF
ij = Rijz

F
i , zFi = γFi di(xi) , (i, j) ∈ A , (19)

where for all i ∈ E

γFi =sup

γ ∈ [0, 1] : γ · max
k∈E:

(i,k)∈A

∑
h∈E

Rhkdh(xh) ≤ sk(xk)

 (20)

2. and the non-FIFO model

fN
ij = γNj Rijdi(xi) , (i, j) ∈ A , (21)

where for all j ∈ E

γNj = sup

{
γ ∈ [0, 1] : γ ·

∑
h∈E

Rhjdh(xh) ≤ sj(xj)
}

(22)

The FIFO DNL model (19)-(20) generalizes Daganzo’s cell-transmission model [14] by extending
it to the case where nodes (i.e., junctions) may have multiple incoming and outgoing links (cells).
Since fFij = Rijz

F
i in every circumstances, the FIFO DNL is amenable to the modeling of multi-

origin multi-destination transportation networks. However, as pointed out by some authors [18], it
corresponds to a rather conservative behavioral model, in which not only do drivers never change
their routing choice, thus blindly queuing up even in presence of alternative routes to the same
destination, nor does it take into account presence of multiple lanes for multiple maneuvers at
junctions. For example, a congested offramp on a freeway would slow down and possibly block the
flow of vehicles on the main line, which is not always realistic.

On the other hand, the main difference of the non-FIFO model with respect to the FIFO one is
that congestion in one of the outgoing cells does not influence the flow towards other outgoing cells.
In the previous example, while the congested offramp forces vehicles that would like to take it to
stop in the freeway, those that want to continue on the main line are free to do so, if the downstream
supply of the main line is sufficient. In fact, the non-FIFO DNL model satisfies fNij = Rijz

N
i when

zNi = di(xi) (free-flow regime), whereas the actual turning ratios fNij /z
N
i may deviate from the

prescribed ones, namely, Rij , when zNi < di(xi) (congested regime). As a consequence, the non-
FIFO DNL model can be used for single-origin single-destination network (in which the actual path
of a vehicle does not matter), but exhibits unrealistic behaviors in multi-origin multi-destination
networks. A possibly more realistic model may involve a combination of the two DNL models
—FIFO and non-FIFO— in which a fraction of drivers can change path, while another fraction
cannot – for example, private cars can deviate from their path to chose a more convenient one,
while buses or trucks have prescribed paths to follow.

To summarize, we consider DNL models that can all be written in the following form

ẋi(t) = λi(t) + gMi (x(t), α(t), c(t), R(t)) , i ∈ E , (23)

for all t ∈ [0, T ], where λi(t) is the external inflow in cell i, α(t) is the vector of all demand control
parameters, c(t) is the vector of all ramp metering control parameters, and R(t) is the controlled
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turning ratio matrix; the superscript M indices the specific model (i.e., M = F for FIFO, M = N
for non-FIFO);

gMi (x, α, c, R)=
∑
j∈E

fMji (x, α, c, R)− zMi ,

zMi =


∑
j∈E

fMij (x, α, c, R) i ∈ E\Ro

µi i ∈ Ro

(24)

and the outflows zMi satisfy (17).
We now address the issue of implementation of the optimal solutions to the SO-DTA, the

PC-SO-DTA, and the FC-SO-DTA problems. Our result is summarized in the following.

(i) For any feasible solution (xi(t), yi(t), zi(t), µi(t), fij(t)) of the SO-DTA problem (3)-(8), set
the demand controls αi(t), ramp metering controls ci(t), and controlled turning ratio matrix
R(t), for t ∈ [0, T ], as follows

αi(t) =
zi(t)

di(xi(t))
, ∀i ∈ E \ R (25)

ci(t) = zi(t), ∀i ∈ R (26)

Rij(t) =
fij(t)

zi(t)
, ∀i, j ∈ E (27)

with the convention that αi(t) = 1 if zi(t) = di(xi(t)) = 0 and that, if zi(t) = 0, then
Rij(t) = |{k ∈ E : (i, k) ∈ A}|−1 for all (i, j) ∈ A and Rij(t) = 0 for all (i, j) /∈ A. Then x(t)
coincides with the trajectory of the controlled DNL model (23)–(24).

Moreover, let R(t), t ∈ [0, T ], be an exogenous turning ratio matrix. Then:

(ii) For any feasible solution (xi(t), yi(t), zi(t), µi(t), fij(t)) of the PC-SO-DTA problem (3)-(8)
and (11), set the demand controls αi(t) and controlled turning ratio matrix R(t), for t ∈ [0, T ],
as in (25) and (27), respectively. Then, the following is satisfied:

αiRij ≤ Rij , i, j ∈ E , i 6∈ R . (28)

and x(t) coincides with the trajectory of the controlled DNL model (23)–(24).

(iii) For any feasible solution (xi(t), yi(t), zi(t), µi(t), fij(t)) of the FC-SO-DTA problem (3)-(8)
and (12), set the demand controls αi(t), for t ∈ [0, T ], as in (25), and let controlled turning
ratio matrix R(t) = R(t) coincide with the uncontrolled one. Then, x(t) coincides with the
trajectory of the controlled DNL model (23)–(24).

Furthermore, in all the three cases (i)–(iii) above, the implemented trajectory is in the free-flow
region for all t ∈ [0, T ].

Simulation results illustrating the utility of our control design, and sensitivity analysis with
respect to perturbations in inflow λ, along with other details of the results described here, can be
found in our related publication [19].
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9.2 Distributed Computation of Optimal Equilibrium for Traffic Networks

We adopt the same framework as adopted in Section 9.1. However, we repeat a few key aspects
here for the sake of completeness.

The dynamic state of the network is described by a time-varying vector ρ(t) ∈ RE whose entries
ρi(t) represent the densities in the cells i ∈ E at time t. The inputs of the network are the inflows
λi(t) ≥ 0 at the on-ramps i ∈ R. Conventionally, we set λi(t) ≡ 0 for all non on-ramp cells
i ∈ E \ R, and stack up all the inflows in a vector λ(t) ∈ RE . The dynamical model is described
by a system of ODEs:

ρ̇i = f in
i (ρ)− fout

i (ρ) , i ∈ E (29)

Here, ρi ≥ 0 stands for the density on a cell i, ρ ∈ RE+ stands for the vector of all densities on the
different cells, and f in

i (ρ) and fout
i (ρ) denote the inflow to and, respectively, the outflow from cell i.

Following Daganzo’s seminal work [4, 14], the physical characteristics of each cell i are captured by
a demand function di(ρi) and a supply function si(ρi), representing upper bounds on the outflow
from and, respectively, the inflow in cell i at time t, when the current density on it is ρi, i.e.,

f in
i (ρ) ≤ si(ρi) , fout

i (ρ) ≤ di(ρi) , i ∈ E . (30)

The jam density on cell i, namely, the maximum density allowed on i, is defined as Bi :=
sup{ρ ≥ 0 : si(ρ, t) > 0} . Observe that (30) implies that the set S :=

∏
i∈E [0, Bi] is invariant under

the dynamics (29). The function gi(ρi) = min{di(ρi), si(ρi)} is often interpreted as the fundamental
diagram and Ci := maxρi≥0 gi(ρi) as the flow capacity of cell i. A particularly relevant role in the
applications has been played by the special case of linear demand functions di(ρi) = viρi , where
vi is the free-flow speed and saturated affine supply functions si(ρi) = min{Si, wi(Bi− ρi)} , where
wi is the wave-speed and Si a supply saturation level. We will also use the convention that on all
on-ramps i ∈ R the supply and jam density are infinite, i.e., si( · , · ) ≡ +∞ and Bi = +∞. In
contrast, we will assume that the jam density on every other cell is finite, i.e., Bi < +∞ for all
i ∈ E \ R.

The network topology described by the directed graph G induces natural constraints on the
dynamics (29): flow is possible only between consecutive cells, i.e., from a cell i to a cell j such
that τi = σj . Specifically, we model the flow fij(ρ), (i, j) ∈ Ā, as a continuous function of ρ, and
let the inflow in and outflow from a cell i, respectively, satisfy the following for all i ∈ E

f in
i (ρ) = λi +

∑
j∈E−i

fji(ρ), fout
i (ρ) =

∑
j∈E+i

fij(ρ) (31)

The actual form of the flow functions fij(ρ) depends on a turning preference matrix R ∈ RĀ
satisfying, for all i ∈ E and j ∈ Ē , Rij ≥ 0,

∑
k∈E+i

Rik = 1 and Rij = 0 if τi 6= σj . In particular,

the flow functions have to satisfy the following natural constraints

0 ≤ fij(ρ) ≤ Rijdi(ρi) , ∀(i, j) ∈ A
λi +

∑
j∈E−i

fji(ρ) ≤ si(ρi) , ∀i ∈ E (32)

and, for all v ∈ V, ∑
j∈E−i

Rjidj(ρj) ≤ si(ρi) ∀i ∈ E+
v

=⇒ fji(ρ) = Rjidj(ρj) ∀j ∈ E−v
(33)
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and the outflow from every off-ramp is equal to demand, i.e.,∑
j∈E+i

fij(ρ) = di(ρi), i ∈ Ro. (34)

The constraints (32)–(34) do not uniquely characterize the value of the flow functions fij(ρ)
when

∑
j∈E−i

Rjidj(ρj) > si(ρi). In this case, (32) only ensures that the total inflow in i does not

exceed the supply of cell i, while specific allocation rules are needed to determine how much of
such supply is allocated to the flows from the different cells i ∈ E−j . We consider a non-First In
First Out (non-FIFO) policy, according to which fij(ρ) = γjRijdi(ρi) for all (i, j) ∈ A , where for
all j ∈ E , γj = sup

{
γ ∈ [0, 1] : γ ·∑h∈E Rhjdh(ρh) ≤ sj(ρj)

}
.

The Optimal Equilibrium Selection Problem: For given λ, R, demand and supply functions
on the links, existence and stability of equilibria for the dynamical model, described by (29)-(33)
under non-FIFO policy has been studied in our previous work [20, 21]. Let F be the set of (ρ, f)
that satisfy the following:

ρi ≥ 0 ∀ i ∈ E
fij ≥ 0 ∀ (i, j) ∈ Ā∑

j∈E+i

fij = λi +
∑
j∈E−i

fji ∀i ∈ E

λi +
∑
j∈E−i

fji ≤ si(ρi) ∀i ∈ E

∑
j∈E+i

fij ≤ di(ρi) ∀i ∈ E

(35)

One can easily check that F is a relaxation of the actual constraints imposed by the dynamics
at equilibrium, as described by (29)-(34), and the non-FIFO policy. In our previous work [20], we
showed that, for every (ρ, f) ∈ F , one can design variable speed (to change demand functions on
non on-ramp links), ramp metering (to change demand functions on on-ramps) and routing matrix
R under which (ρ, f) is an equilibrium for the dynamical model under non-FIFO policy. Moreover,
the set F is convex in (ρ, f). This motivates finding a point in F that is optimal with respect to a
prescribed convex cost function. Accordingly, we consider the following problem:

min
(ρ,f)∈F

∑
i∈E

ψi(ρi) +
∑

(i,j)∈Ā

ξij(fij) (36)

The primal and dual updates, corresponding to the Alternating Direction Method of Multipliers
(ADMM), can be written in a concise form as follows:
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For all i ∈ E\Ro:[
f̄i(k + 1)
ρi(k + 1)

]
= argmin

(f̄i,ρi)∈Di

ψi(ρi) +
∑

(i,j)∈Ā

ξij(fij)

+
α

2

∑
j∈E+i

(fij − fij(k)−∆i(k) + yi(k)− yj(k))2

+
α

2

∑
j∈E+i

fij −
∑
j∈E+i

fij(k) + ∆i(k)

2

(37a)

For all i ∈ Ro: [
fij(k + 1)
ρi(k + 1)

]
= argmin

(f̄i,ρi)∈Di

ψi(ρi)

+
α

2
(fij − fij(k) + ∆i(k) + yi(k))2

(37b)

For all i ∈ E :

∆i(k + 1) =

∑
j∈E+i

fij(k + 1)−∑j∈E−i
fji(k + 1)− λi

ni + 1

yi(k + 1) = yi(k) + ∆i(k + 1)

(37c)

The distributed setting for executing the iterations in (37) is as follows. Each link i is associated
with a processing unit, which is responsible for updating {f̄i, ρi, yi} according to (37). During every
iteration, the unit on link i communicates with its neighboring units twice as follows: after the
primal update, unit i sends the most current values of f̄i to the units on E+

i , and after the dual
update, unit i sends the most current values of yi to the units on E−i . We assume synchronous
operation between the processing units.

The following result gives sufficient conditions under which the iterates of (37) converge to an
optimal solution of (36).

Let (ρ∗, f∗) be the solution to the optimal equilibrium selection problem in (36), and (ρ(k), f(k))
be the iterations in (37). If

∑
j∈E+i

f∗ij < Ci for all i ∈ E , then (ρ(k), f(k))→ (ρ∗, f∗) as k → +∞.

The proof of this result, as well as the iterations for Newton’s method inspired by the Accel-
erated Dual Descent method for network flow optimization from [22] can be found in our related
publication [23].

Simulations: The ADMM and ADD based methods were implemented on the network illustrated
in Fig 5, with supply and demand functions taken as si(ρi) = 10− ρi and di(ρi) = ρi for all i. The
inflows and outflows are set to be zero, except for the following components: λ(1) = λ(12) = 1,
λ(9) = 2, and µ(27) = µ(32) = 2. The cost functions are chosen to be ψi(ρi) = ρ2

i for all i, and
ξij(fij) = 0.2f2

ij .
The simulation results for the ADMM method, as shown in Fig. 6, illustrate convergence

of the primal variables. The simulation results for the ADD-based method in Fig. 7, show the
improvements in the convergence rate with increasing truncation terms N in the approximations
of the pseudo-inverse of the Hessian.
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Figure 5: A directed cyclic network with 20 nodes and 32 links used in the simulations
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Figure 6: Convergence of the primal variables to their optimal values under ADMM.
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Figure 7: Convergence of link densities (a) and flow (b) to their optimal values under the ADD-
based method for different number of truncation terms N .
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9.3 Stability Analysis and Throughput Optimality of Proportionally Fair Traf-
fic Signal Control Policies

In this section, we present our key results on stability analysis of proportionally fair controllers –
further details can be found in our related publication [24].

We describe the topology of a urban traffic network as a capacitated directed graph G =
(V, E , C), whose nodes v ∈ V represent junctions and whose links i ∈ E represent lanes, and where
C ∈ RE is a vector whose entries Ci > 0 represent the flow capacities of the lanes i ∈ E . Traffic
flows among consecutive lanes according to a routing matrix R ∈ RE×E+ whose (i, j)-th entry Rij
—which will be referred to as a turning ratio— represents the fraction of flow out of lane i that joins
lane j. Conservation of mass implies that

∑
j∈E Rij ≤ 1 for all i ∈ E , the quantity 1−∑j∈E Rij ≥ 0

representing the fraction of flow out of lane i that leaves the network directly. In other words, the
routing matrix R is sub-stochastic. Moreover, the natural topological constraints encoded in the
graph G imply that Rij = 0 if τi 6= σj , i.e., Rij = 0 whenever lane i does not end in the junction
where lane j starts. We will refer to this property of the routing matrix R as being adapted to G.
Finally, we consider an arrival vector λ ∈ RE+, whose entries λi ≥ 0 describe the external inflows
on the lanes i ∈ E .

In order to complete the description of the urban traffic network, we need to introduce the
notion of phases. These are subsets of lanes that can be given green light simultaneously. We will
thus identify every phase with a binary vector p ∈ {0, 1}E whose i-th entry pi equals 1 if lane i
receives green light during phase p and 0 otherwise. The set of all possible phases will be denoted
by Ψ ⊆ {0, 1}E .

We will then study continuous-time dynamics with state vector ρ(t) ∈ RE+ whose entries ρi(t)
denote the traffic volume on the lanes i ∈ E . Such dynamics are of the form

ρ̇i = λi +
∑
j∈E

RjiCjhj(ρ)− Cihi(ρ), ∀i ∈ E . (38)

In equation (38) above, when ρi > 0, the term hi(ρ) represents the total fraction of time that lane
i is given green light. This can be expressed as

hi(ρ) =
∑
p∈Ψ

θp(ρ)pi , if ρi > 0 , (39)

where θp(ρ) represents the fraction of time that phase p is activated. Here, θ(ρ) is a green light
(feedback) policy : the domain of θ is RE+, while its range is the simplex S of probability vectors
over the set of phases Ψ. In other terms, for all network states ρ ∈ RE+, θ(ρ) is a vector with
nonnegative entries θp(ρ) indexed by the phases p ∈ Ψ, such that

∑
p∈Ψ θp(ρ) = 1.

Observe that if an equilibrium ρ∗ of the dynamical system (38) exists with all positive entries,
it must satisfy

0 = λi +
∑
j∈E

RjiCjhj(ρ
∗)− Cihi(ρ∗),

which can be compactly written as

λ+ (RT − I)diag (C)h(ρ∗) = 0,

or
h(ρ∗) = diag (C)−1 a, a := (I −RT )−1λ . (40)
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This argument implies the following result.
If the dynamical system (38) admits an equilibrium ρ∗ with all positive entries, then it must

hold that
diag (C)−1 a ∈ conv(Ψ) , (41)

where
a = (I −RT )−1λ . (42)

We will focus on the case where diag (C)−1 a ∈ int(conv(Ψ)) and study green light policies that
admit (globally asymptotically) stable equilibria. We will consider sets of phases that model local
constraints among the incoming lanes in each intersection v ∈ V. Specifically, observe that the
set of lanes can be partitioned as E = ∪v∈VEv, where Ev stands for the set of lanes coming into
junction v.

We will then focus on green light policies θ(ρ) that can be written as the concatenation of local
policies θ(v)(ρ(v)) —where ρ(v) = (ρi)i∈Ev is the vector of densities on the lanes coming into junction
v ∈ V— of the following form

θ(v)(ρ(v)) ∈ argmax
θ∈Sv

∑
i∈Ev

ρi log(
∑
p∈Ψv

θppi) + κv log θ0 , (43)

where Sv is the simplex of probability vectors over Ψv and κv > 0 is the zero phase weight. The
zero phase is introduced to capture the fact that under normal traffic demands, a fraction of the
possible utilization is used to phase shifts.

From now on, with a slight abuse of notation, we will refer to

h(v)(ρ(v)) =
∑
p∈Ψv

θ(v)
p (ρ(v))p , ∀v ∈ V (44)

as the maximizing green light policy.
In this section we focus on the special case of phase sets that do not allow for multiphases, i.e.,

where every phase can prescribe green light to at most one lane incoming to a junction. Specifically,
we assume that the local set of phases at every intersection is

Ψv = {p ∈ {0, 1}Ev :
∑
e∈Ev

pe ≤ 1} , ∀v ∈ V. (45)

In this case, the necessary condition for stability (41) takes the form

ai ≥ 0 , ∀i ∈ E ,
∑
i∈Ev

ai
Ci

< 1 , ∀v ∈ V .

Moreover, the green light policy can be expressed explicitly as in the following result.
For every junction v ∈ V, and every strictly positive local state vector ρ(v), the maximizing

green light policy satisfies

h
(v)
i (ρ(v)) =

ρi∑
j∈Ev ρj + κv

, ∀i ∈ Ev .

Using the explicit expression above allows one to prove the following stability result. The
dynamical system (38), with green light policies given by (44), satisfying∑

i∈Ev

ai
Ci

< 1, ∀v ∈ V, (46)
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admits a globally asymptotically stable equilibrium ρ∗, where

ρ(v)∗ = κv

(
I −

(
ai
Ci

)
i∈Ev

1T

)−1(
ai
Ci

)
i∈Ev

for all v ∈ V.
We are currently pursuing extensions of our analysis to the multiphase case.

9.4 Comparison Study between Proportionally Fair and Max Pressure Traffic
Signal Control Policies for Signalized Arterial Networks

In this section, we present our key results on case studies – further details can be found in our
related publication [25].

We first describe the model for traffic flow over arterial networks under signalized intersections.
We illustrate some aspects of our model using the 8 intersection sub-network from downtown Los
Angeles, which we also use in our simulation studies. This sub-network is shown in Figure 8.
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Figure 8: The Los Angeles downtown sub-network used in the studies: (a) schematic representation,
with the solid disks showing the approximate location of loop detector sensors from which we have
access to offline traffic count data; (b) aerial view.

An arterial network consists of intersections and links, where a link consists of multiple lanes.
We now formulate dynamics that represent mass balance equations for queue lengths associated
with different movements. We remark that our purpose is to represent traffic dynamics only to
provide context for traffic signal control design. In particular, the controllers presented in this
report are evaluated in a microscopic traffic simulator, and not by simulating the dynamics that
we present here. The cycle time and offset at every intersection is assumed to be fixed. Their
values are described at appropriate places in the report. We describe dynamics for one sample
intersection, referring to Figure 9 to illustrate the key concepts.

A movement at the intersection is denoted by (i, j) corresponding to an admissible maneuver
from the upstream link i into the downstream link j at the intersection. Every link i is divided
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Figure 9: (a) Illustration of a movement, lane and a link at a sample intersection. Link number
20 contains two lanes, and each lane supports multiple movements. (b) Phase architecture at a
sample intersection.

into multiple lanes. A lane can support multiple movements, and the same movement can be made
through multiple lanes. Every movement (i, j) is associated with a saturated flow capacity, denoted
by Cij and a turning ratio βij denoting the fraction of flow entering link i from upstream and from
external to the network, that intends to perform the movement (i, j) and hence the corresponding
traffic will queue up in any of the lanes on link i supporting that movement.

The saturated flow capacities for a movement are cumulative over all the lanes which facilitate
that movement. The βij are also referred to as turning ratios, and naturally satisfy

∑
j βij ≤ 1,

where the summation is over all movements possible from link i, and the residual 1 − ∑j βij
represents the fraction of flow that departs the network from link i. Let the set of phases at
the intersection be fixed, and denoted by {φ1, . . . , φm}. Each phase is associated with, possibly
multiple, non-conflicting movements that become active when the phase is given green. At most
one phase is given green at any time. We assume that the sub-network used in the simulations
satisfies the following:

(P1) Every movement belongs to one and only one phase.

While we impose (P1) for simplicity, it is not difficult to extend the descriptions of the controllers
to the settings where (P1) is not satisfied.

Let G be the total green time, i.e., cycle time minus the time for all red and yellow. At the
beginning of every cycle, the traffic signal controller updates allocation of green light to every
phase. Let the fraction of green time G allocated to phase φi during the t-th cycle be denoted by
hφ[t]. Let xij [t] be the number of vehicles waiting in queue to perform the (i, j) movement at the
beginning of the t-th cycle, and let Ai[t] be the number of vehicles entering link i from outside the
network during the t-th cycle. The dynamics is then given by:

xij [t+ 1] = xij [t] + βij

(
Ai[t] +

∑
`

f`i[t]

)
− fij [t] (47)

where fij [t] is the maximum number of vehicles that can execute (i, j) movement during the
t-th cycle, i.e.,

fij [t] = GCijhφ[t],

where φ is the phase under which (i, j) is activated. We implicitly assume that, if the right hand side
of (47) is negative, then it is reset to zero. This would correspond to emptying of the corresponding
queue. We clarify that we make this assumption only to simplify the expression for the dynamics
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in (47), and also to simplify the design of controllers. However, the microscopic traffic simulations,
from which we report results in this section, naturally possess this feature, and hence do not require
such an assumption.

We consider decentralized dynamic traffic signal controllers that measure the instantaneous
queue lengths in the immediate vicinity of the intersection at the beginning of each cycle to update
the green time allocations.3 Ideally, many existing decentralized controllers, some of which we
describe in the next section, require queue length measurements for individual movements. This
may be impractical, especially when lanes can support multiple movements. Fortunately, the
following features, which are satisfied by real networks, allow us to implement our proposed PF
controllers using only queue length measurements for individual lanes. These features also allow
intuitive extensions of existing MP controllers which we use for comparison purposes.

(P2) All the movements associated with a given lane are activated in the same phase.

(P2’) All the movements associated with a given link are activated in the same phase.

(P2’) implies (P2). (P2) is expected to be true for every network. The sub-network used in our
simulations satisfies (P2’).

Max Pressure (MP) Controller: The MP controller involves adding up pressures associated
with movements constituting a phase, and then allocating green times as a function of the pressure
associated with different phases. The pressure associated with a movement (i, j) at the beginning
of the t-th cycle is computed as

pij [t] = Cij

(
xij [t]−

∑
`

βj`xj`[t]

)
, (48)

where the summation in ` is over all the movements from the downstream link j. The pressure
associated with a phase φ is the sum of the pressures associated with the movements constituting
the phase:

pφ[t] =
∑

(i,j)∈φ

pij [t]. (49)

Finally, the green time allocation under MP controller is given by:

hMP
φr [t] =

exp(ηpφr [t])∑m
s=1 exp(ηpφs [t])

r = 1, . . . ,m , (50)

where η > 0 is a parameter to be tuned. When the pressure computation in (48) takes only the
non-negative part of the right hand side, when each phase consists of only movement, and when
η is very large was originally proposed for communication networks in [8] and extended to traffic
signal control in [10]. Since then various extensions have been proposed, e.g., see [11].

Since it is impractical to have queue length measurements for every movement, as would be
required to implement (48), we use the following approximation to relate queue lengths for move-
ments and links: xij [t] = βijxi[t]. This approximation is made only for the purpose of designing
appropriate controllers. In particular, the underlying model in the traffic simulation results does

3One could consider several variations on queue length measurements, including measurements averaged over
previous cycle, which our simulation setup is also equipped to handle. We plan to study the effect of such variations
on the resulting traffic dynamics in our future work.
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not make any such approximation. The link queue lengths can be readily measured, e.g., in the
traffic simulator that we use for our simulation studies. Under the approximation, the pressure
associated with a movement can be expressed in terms of link queue lengths as:

pij [t] = Cij

(
βijxi[t]−

∑
`

β2
j`xj [t]

)
. (51)

We will denote the MP controller given by (51), (49) and (50) as hMP1. The following approx-
imation has also been proposed, e.g., in [26], to compute the pressure associated with a movement
in terms of link queue lengths as:

pij [t] = Cij (xi[t]− xj [t]) . (52)

We will denote the MP controller given by (52), (49) and (50) as hMP2. An another advantage of
(52) is that it does not require information about turning ratios.

An another approach to compute pressure using aggregate link queue length, under (P2’), is
proposed in [11] as:

pφ[t] =
∑

i: (i,j)∈φ

Ci

xi[t]−∑
j

βijxj [t]

 , (53)

where Ci :=
∑

j Cij is the aggregate saturated flow capacity of all movements associated with link

i. We will denote the MP controller given by (53) and (50) as hMP3. A few other variants of MP
controllers have been proposed recently, including explicit consideration for lane capacities, e.g.,
see [27, 28], and replacing turning ratios with their online estimates, e.g., see [11]. One can also
write an approximation similar to (51) to compute pressure for a movement in terms of lane queue
length measurements. Such an approximation will be relevant, e.g., when the network satisfies the
weaker property of (P2).

While MP controllers have attracted considerable attention in the recent past, the PF con-
trollers, which we describe next, have received very little attention.

Proportionally Fair (PF) Controller: The implementation of the PF controller requires, for
every phase, aggregate queue length over all the movements associated with the phase. This is the
same as the total queue length over all the lanes (or links) activated by a phase under (P2) (or
(P2’)). Let xφ[t] be the aggregate queue length associated with phase φ at the beginning of the t-th
cycle. The green time allocation under PF controller hPF[t] is equal to the value of θ corresponding
to the optimal solution of the following:

maximize

m∑
r=1

xφr [t] log θr

subject to θr ≥ 0, r = 1, . . . ,m
m∑
r=1

θr = 1

(54)

When (P1) is satisfied, the solution to (54) can be written in closed form as follows:

hPF
φr [t] =

xφr [t]∑m
s=1 xφs [t]

, r = 1, . . . ,m
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This means that the green time allocated to a phase φr under PF policy is proportional to the
aggregate queue length associated with φr. We choose to write (54) in its current form because
it can be readily adapted to settings where (P1) is not satisfied, e.g., see our recent work [24]
for details. In fact, the control implementation in VISSIM described in the Simulations section
implements the PF controller for the general setting, for which the optimization in eq. (54) is
convex, and can be solved in real-time using available software tools such as cvx [6, 7].

Simulations: The road network shown in Figure 8 a) is created in PTV VISSIM while respecting
appropriate geometric proportions, using Google Maps and signal timing charts procured from
LADoT. We used arterial loop detector data collected from May 9 to May 31, 2013 at the locations
shown in Figure 8 (a) to extract the arrival rates. The data included volume, speed and occupancy,
recorded once every 5 minutes. External arrival rate for each incoming link is set to the mean value
between 5-7 pm. The resulting arrival rates are as follows (all in veh / hour):

λ17 = 231, λ4 = 156, λ26 = 45, λ31 = 30, λ30 = 79, λ20 = 240, (55)

λ44, λ49, λ52, λ53 were missing in the data set and they all are set to 200 veh/hour.
The saturated flow capacities are measured offline in VISSIM for every movement. The satu-

rated flow capacity is 2200 vehicle/hour/lane for through movement and 1800 vehicle/hour/lane
for right-turn and left-turn movements. These values are relatively close to the standard values
reported in HCM 2000 [29]. Turn ratios are assumed to be equally distributed between the admis-
sible movements at incoming link of each intersection. The values of cycle time and total green
light time per cycle for each intersection are obtained from LADoT signal timing charts. The green
light time and cycle time for all the intersections are 80 seconds and 90 seconds respectively. We
consider two scenarios for the simulations: zero offset and non-zero offset. For the non-zero offset
scenario, we use the offsets from LADoT timing chart. The signal offsets are 77, 73, 47, 77, 15, 27,
64, and 36 seconds for intersections I1 to I8 respectively.

All the simulation runs were started with an empty network, and, referring to (50), we used η =
0.1 in all our MP controller implementations. Every intersection has two phases: one corresponding
to north south movements, and the other one for the east west movements, as shown in Figure 9(b)
for a sample intersection. The overall architecture for interfacing our control implementation with
VISSIM simulator is shown in Figure 10.

We report comparison between MP1, MP2, MP3 and PF controllers with respect to network
throughput and average travel time.

The network throughput is described in terms of feasible external inflows. A set of external
inflows λ is said to be feasible for a given network under given turning ratios β, saturated flow
capacities C, and a control policy if the fraction of vehicles spilling outside the boundary of the net-
work is negligible. Since there are 10 entry points in our network, the set of feasible external inflows
is a 10 dimensional set. In general, it is hard to compute this set exactly. We first describe a sim-
ple procedure to compute an outer approximation to this set. Let z(λ, β, C) be the corresponding
vector of steady-state flows under fixed-time controllers associated with various movements. Then
a necessary condition for the external inflow λ to be feasible is that the corresponding steady-state
flow satisfies the following at every intersection.

m∑
r=1

max
(i,j)∈φr

zij
Cij
≤ G

T
, (56)
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Figure 10: An overview of the implementation of control architecture with VISSIM.

i.e., the sum of the critical flow ratio associated with different phases, at every intersection, is less
than the ratio of green light time to total cycle time. Such a condition is standard for fixed time
controllers.

We compared the outer approximation with simulations in VISSIM for various control policies.
For every control policy, we start with nominal external inflows in (55), and then increase one
component until the fraction of vehicles spilling outside the network at each of the 10 entry points
is less than 5 %. The maximum value is reported in Table 4 for each of the three control policies for
a few representative components. These results suggest that in both zero offset and non-zero offset
scenarios, the throughput of PF controller is comparable to the MP1 controller, and significantly
better than the MP2 and MP3 controllers proposed in the literature.

PF MP1 MP2 MP3

λmax
i Upper bound Zero offset Non-zero offset Zero offset Non-zero offset Zero offset Non-zero offset Zero offset Non-zero offset

i=4 3140 2500-2600 2100-2200 2300-2400 2400-2500 2000-2100 1200-1300 1900-2000 1300-1400

i=26 4310 2600-2700 2800-2900 2500-2600 2500-2600 1500-1600 1400-1500 1600-1700 1400-1500

i=30 4510 2800-2900 2800-2900 2900-3000 2800-2900 1900-2000 1600-1700 1800-1900 1800-1900

Table 4: Comparison of the upper bound on network throughput capacity as given by the outer
approximation in (56), and the the ones found through simulation studies under PF, MP1, MP2
and MP3 controllers. Each row gives the maximum feasible external inflow, in vehicles per hour,
at the corresponding entry point of the network, when the arrival rates at all other entry points
are fixed at their nominal values given by (55).

We computed the travel time under the three control policies, for external inflow equal to 4
times the nominal values given in (55). This external inflow was first checked to be feasible, and
was chosen so as to simulate heavy traffic, i.e., traffic conditions which are barely feasible 4. We
borrow the heavy traffic terminology from the queueing theory literature. The output file from

4While we evaluate travel times under various controllers for feasible demands, the controllers as such are applicable
even for infeasible demands. A thorough comparison of performances between various controllers under infeasible
demands, and the corresponding implication for controller design is left for future work.
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VISSIM gives, for every simulation instant, the time spent by every vehicle currently present in the
network up to that time instant. This data is used to compute the running average of the travel
time for all the vehicles, including the ones which have departed the network. Figure 11 shows the
average travel time based on 5 stochastic simulation runs in VISSIM. The confidence intervals of
the results are shown by the error bars. Each error bar represents one standard deviation on either
side of the mean.
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Figure 11: Comparison of the running average of travel time for heavy traffic under PF and MP
controllers using (a) Zero offset and (b) Non-zero offset.

Figure 11 shows that, in non-zero offset scenario, the average travel time under PF is consistently
better than the MP2 and MP3 controllers, and, for the zero offset scenario, the performance of PF
controllers is comparable to its MP counterparts in spite of its minimalistic nature.

Table 5 shows that for zero offset scenario, with some exceptions, steady state queue lengths
are lower under PF in comparison to MP controllers. The links which show the reverse trend
(e.g., link 10) are typically the ones whose dominant movement has a downstream link exiting
the network. On the other hand, e.g., link 1 also has a movement (right turning) which exits
the network, but this movement is not dominant because it shares only one lane with through
movement, whereas the through movement has 3 dedicated lanes, and is not exiting. For the non-
zero offset scenario, the queue lengths under PF policy are comparable to the ones under MP1 and
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are lower than MP2 and MP3 on most links. We recall that, for the purpose of computation of
pressure in our implementation of MP controllers, we assume zero queue length on the exit lengths,
and hence the links with dominant movement exiting the network has a relatively high pressure
in comparison to the other links at that intersection whose dominant movements do not exit the
network. This feature highlights the boundary effect on the queue lengths under MP controllers.
The PF controllers, however do not exhibit such a boundary effect because the green time allocation
is determined based on queue length measurements only on links at that intersection.

Link No. 1 2 3 4 7 9 10 11 12 19 20 28 33 44 46 48 49 52 53

PF 5.11 21.38 5.55 4.66 7.32 5.43 15.46 6.43 15.03 2.85 6.15 4.84 3.26 3.26 2.68 5.66 5.61 3.19 14.45

MP1 12.47 25.18 9.78 6.33 3.09 9.09 6.31 9.10 6.19 4.82 10.48 2.03 5.06 7.20 5.58 7.08 6.48 9.41 10.45

MP2 12.69 18.15 11.30 6.73 8.53 9.21 6.27 11.10 5.01 4.17 10.21 3.44 5.64 7.07 10.34 9.91 7.44 8.79 9.29

MP3 10.95 29.25 8.88 6.21 7.59 10.83 5.99 9.31 4.33 6.44 9.78 2.33 4.73 6.67 13.61 9.43 7.77 8.35 10.12

(a)
Link No. 1 2 3 4 7 9 10 11 12 19 20 28 33 44 46 48 49 52 53

PF 11.27 16.07 10.03 4.48 5.45 8.20 5.41 9.66 4.41 3.72 10.87 3.57 6.12 7.70 11.33 5.67 5.23 18.95 7.71

MP1 11.85 17.12 10.97 4.79 5.54 8.48 6.37 8.06 3.45 4.31 11.31 3.22 5.90 9.08 9.70 5.20 5.06 10.27 7.77

MP2 13.44 19.67 9.89 6.06 4.86 9.95 5.63 8.94 4.57 2.74 10.30 3.11 6.53 6.91 12.65 9.97 7.73 8.29 10.79

MP3 9.96 13.44 11.05 9.27 9 11.42 5.03 10.73 5.35 5.56 10.53 2.78 5.21 6.05 10.85 10.79 7.46 10.99 10.36

(b)

Table 5: Comparison of steady state average queue lengths on representative links under various
control policies using (a) Zero offset (b) Non-zero offset. Refer to Figure 8 (a) for link number
identifiers. For brevity, queue lengths are reported only for those links which show significant
difference across the three control policies.

The feature of the MP controllers to allocate green time based on comparison between upstream
and downstream queue lengths gives rise to phase shift in the queue length profiles between adjacent
links of the network, as illustrated in Figure 12 and 13. Indeed, this phase shift builds the necessary
pressure to extract green time for the upstream link (link no. 44 in Figure 12). The queue lengths
under PF controller, however are decoupled, and do not show a phase shift. Figure 13 shows that
the phase shift behavior changes in non-zero offset scenario compare to the zero offset scenario.
However, even in non-zero offset scenario, the MP controller shows larger phase shift in comparison
to PF controller. This phase shift might be responsible for higher average queue lengths under MP
controllers in comparison to PF controller.
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Figure 12: Illustration of phase shift in queue length time series on link numbers 1 and 44, which
are adjacent to each other (see Figure 8(a)), under (a) PF and (b) MP2 controllers under zero
offset.
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Figure 13: Illustration of phase shift in queue length time series on link numbers 1 and 44, which
are adjacent to each other (see Figure 8(a)), under (a) PF and (b) MP2 controllers under non-zero
offset

10 Conclusions and Recommendations

Our major findings and conclusions are as follows:

1. For the system optimum dynamic traffic assignment, we proposed a relaxation of realistic traf-
fic dynamics, wherein the total inflow into and total outflow from the cells are independently
upper-bounded by supply and demand respectively. We also design open-loop variable speed,
ramp metering and routing controllers that ensure feasibility of the optimal solutions under
relaxed constraints with respect to several realistic traffic dynamics modeled by a combination
of cell-based features of the Cell Transmission Model and general Dynamic Network Loading
Model that includes FIFO and non-FIFO policies. We also derive bounds on perturbations
in the system trajectory under the proposed open loop controllers, with respect to perturba-
tions in initial condition and external inflow. These results significantly expand the known
results in terms of relationship between computationally efficient SO-DTA formulations and
the feasibility of their optimal solutions with respect to realistic traffic dynamics.

2. The convexity of the equilibrium selection problem and the distributedness of the underlying
traffic dynamics allowed us to adapt two well-known optimization methods to develop algo-
rithms that compute optimal solutions to the equilibrium selection problem in a distributed
manner.

3. We studied stability of some minimalist decentralized traffic signal control policies for ur-
ban traffic networks. Our main theoretical result shows that, in the case when only single
phases are allowed, the resulting traffic network dynamics admit a globally asymptotically
stable equilibrium, provided that the arrival rates belong to the interior of a certain stability
polytope. These results rely on the use of some entropy-like Lyapunov functions previously
considered in the context of stochastic queuing networks. Our ongoing studies suggest that
these favorable properties also extend to several complex phase architectures.

4. We presented a unified framework to distinguish between several variants of max pressure
(MP) controllers in terms of the granularity of real-time queue length measurements required
for their implementation. Proportionally fair (PF) controller does not require information
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about turning ratios, saturated flow capacities and downstream queue length in comparison
to the majority of its MP counterparts. In spite of this minimalist nature, in our microscopic
simulation studies on a Los Angeles downtown sub-network in PTV VISSIM, PF controllers
outperforms MP controllers in terms of throughput and average delay time in non-zero offset
scenario. In the zero offset scenario, the performance of PF controller is comparable to its MP
counterparts. The feature of the MP controllers to allocate green time based on comparison
between upstream and downstream queue lengths gives rise to phase shift in the queue length
profiles between adjacent links of the network. Indeed, this phase shift builds the necessary
pressure to extract green time for the upstream link. The queue lengths under PF controller,
however are decoupled, and do not show a phase shift. The phase shift behavior changes in
non-zero offset scenario compare to the zero offset scenario. However, even in non-zero offset
scenario, the MP controller shows larger phase shift in comparison to the PF controller. This
phase shift might be responsible for higher average queue lengths under MP controllers in
comparison to the PF controller.

11 Deployment and Implementation

No data was gathered in this project. No deployment or implementation were done in this project.

12 Appendices

Not Applicable.
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