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ABSTRACT 

 
 The goal of this research is to develop new approach and technique to 

improve and extend the capabilities of creating, modeling and maintaining 

accurate and up-to-date road infrastructure databases for transportation 

managements and services.  Our research efforts are to assess, define, and use 

the unique spatial and spectral characteristics of the new, advanced sensor 

techniques from aerial imagery and LiDAR for automated road extraction and 

road quality mapping. 

 A number of theoretical and experimental studies lead us to pursue an 

innovative approach that merges the power of perceptual grouping with sensor 

cues, geometric invariants, and machine learning under a unified framework to 

tackle these problems.  This new approach has the potential for automating the 

extraction and mapping of complex road networks from remote sensing data.  In 

addition, the same process also allows for a constrained optimal estimation of 

various terrain features and attributes, thereby producing hierarchical data 

representations under a consistent framework.  Most important, we believe that 

the process of labeling the model elements as buildings, vegetation, roads, and 

terrains will be possible within this framework.  We anticipate a significant step 

reduction in the human time and effort required to produce and update accurate 

road models to transportation infrastructure databases.  
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1. INTRODUCTION 
 

 Creating and maintaining an accurate and up-to-date road infrastructure 

database is crucial to many transportation applications including transportation 

infrastructure management, traffic situational awareness, safety analysis, and 

mission planning and tactical decision-making for incident and emergency 

responses.  Nowadays, Intelligent Transportation Systems (ITS) continuously 

gain ground in transportation management.  A digital topographic database is an 

essential part of the ITS, which requires accurate, high-density spatial models of 

road infrastructures.  In addition, accurate road maps and databases are high 

public demand for travel planning, route guidance, and real-time travel 

navigation, etc. 

 A complete road network model consists of road segments and intersections 

that join the road sections.   In particularly, accurately identifying and labeling of 

the road intersections in road networks is important, especially for safety 

management.  Intersection safety has become a serious problem in the United 

States. Intersection and intersection-related crashes consistently make up a high 

proportion of total fatal crashes. For example, in 2004 more than 2.7 million 

intersection-related crashes occurred, accounting for more than 45 percent of all 

crashes in the United States [FHWA].  FHWA has been initiating a variety of 

researches and strategies focus on improving intersection safety, including 

development of a comprehensive database of road intersections for major US 

roadways.  Many states including California also started to conduct similar efforts 

and strategies: to develop road intersection databases, match traffic crashes to 

the intersections, calculate crash rates for various types of intersections, and 

identify and improve the intersection infrastructures with highest crash rates. 

 However, current road infrastructure databases and the methods to produce 

such databases are insufficient to meet these needs in terms of accuracy, 

confidence, completeness, and automation.  Many existing digital maps and road 

databases are still generated from the old paper based topographical maps, 

which may contain significant spatial errors.  Accurate road databases do not yet 
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exist for vast areas, particularly in areas with rapid expansion.  Many existing 

infrastructure databases need to be updated to capture new road condition and 

expansion.    

 Recently, the US Department of Transportation (USDOT) has extended great 

efforts in use of GPS and advanced remote sensing technologies for road 

mapping and condition assessment to meet these information needs [USDOT].  

These methodologies, though effective, poses new challenges in science and 

technology related to road mapping and feature extraction.  GPS is useful for 

tracking and localization of road features such as road intersections, but it is 

time-consuming and costly, because every road within a DOT's jurisdiction must 

be field-visited to obtain accurate localization information.  Remote sensing 

techniques such as measures from aerial imagery and LiDAR (Light Detection 

and Ranging) provides one means by which large areas can be rapidly mapped 

with high standard of accuracy, but technology that use these sensor data for 

detection and mapping of road and transportation networks is still in its infancy. 

Existing techniques and approaches are typically characterized by poor detection 

rates, low confidences, and a requirement for extensive operator interaction.  The 

USDOT has therefore extended high demand for developing new technologies 

that can rapidly and effectively create accurate and up-to-date road infrastructure 

models and databases to facilitate advanced transportation management and 

public traveling requirements.   

 This report summarizes the research efforts and accomplishments for the 

project: Rapid Extraction and Updating Road network to Caltrans Database.  The 

goal of this research is to pursue a step change in the approach and technique 

for improving and extending the capabilities of creating, modeling and 

maintaining accurate and up-to-date road infrastructure models for transportation 

managements and services.  Our research efforts are to assess, define, and use 

the unique spatial and spectral characteristics of the new, advanced sensor 

techniques from aerial imagery and LiDAR for automated road feature extraction 

and road quality mapping.  
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2. LITERATURE REVIEW 
 

 Road feature extraction and mapping is a long-standing and difficult problem.  

Historically, the road maps are mainly produced during the road survey and 

construction stages, requiring time-intensive and tedious manual processing by 

skilled operators.  Later on, the techniques from remote sensing have been 

widely employed for road extraction and mapping.  Over the years, a wealth of 

research, employing a variety of sensing technologies, has been reported from 

geospatial and computer vision communities.  Technically, the methods for road 

extraction from remote sensing data (aerial photographs, satellite images and 

LiDAR) can be classified as three categories: pixel-based approach, region-

based approach and knowledge-based technique.   

 

2.1 Pixel-based approach 
 In [Bau99], lines are extracted in an image with reduced resolution as well 

as roadside edges in the original high-resolution image.  Similarly, [Lis04] uses a 

line detector to extract lines from multiple scales of the original data. [9] applies 

the edge detector on multi-resolution images and uses the result as input to the 

higher-level processing phase.  [Wes04] applies Steger’s differential geometry 

approach for ine extraction.  [Bar03] uses a Deriche operator for edge detection 

with an added hysteresis threshold, followed by an edge smoothing using the 

Ramer algorithm. 

 [Lap00] uses a multi-scale ridge detector to detect lines at coarser scale, and 

then uses a local edge detector at a finer scale to extract parallel edges which 

are optimized using a variation of the active contour models technique (snakes).  

[Del05] presents a technique where a directional adaptive filter is used for the 

detection of pixels with particular orientation.  Similarly, [Por03] achieves 

excellent results by using a Gaussian model based approach.  In order to extract 

the road magnitude and orientation for each point, they use a quadruple 

orthogonal line filter set. 
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2.2 Region-based approach 
 [Zha06] uses predefined membership functions for road surfaces as a 

measure for image segmentation and clustering.  Likewise, in [Clo05] they use 

the reflectance properties, from the ALS data and perform a region-growing 

algorithm to detect the roads.   

 Hierarchical network can be used to classify and segment objects.  A 

slightly different approach is proposed in [Lis04] where a line detector and a 

classification algorithm are applied on multiple scales of the original data and the 

results are then merged. 

 

2.3 Knowledge-based approach 
 In [Wes04], human input is used to guide a system in the extraction of 

context objects and regions with associated confidence measures. The system in 

[Zha01] integrates knowledge processing of color image data and information 

from digital geographic databases, extracts and fuses multiple object cues, thus 

takes into account context information, employs existing knowledge, rules and 

models, and treats each road subclass accordingly. [4] uses a rule-based 

algorithm for detection of buildings at the first stage and then at the second stage 

the reflectance properties of the road. Similarly, [Zha06] uses reflectance as a 

measure for the image segmentation and clustering.  

 Explicit knowledge about geometric and radiometric properties of roads is 

used in [Wes04] to construct road segments from the hypotheses of roadsides.  

In [Bar03] the developed system can detect a variety of road junctions using a 

feed-forward neural network, which requires collected data for the training of the 

network.  [Pet03] takes high resolution images as input along with prior 

knowledge about the roads e.g. road models and road properties. 

 While considerable attention has been recently given to the development of 

automated techniques for road network extraction and mapping, it still remains a 

challenge due to the wide variations of roads and the complexities of 

environments.  Most of current methods applied to extract roads from open or 

rural areas were successful to some extent due to the relative simple scene and 
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road model.  For the extraction of roads in dense urban areas, especially from 

high-resolution imagery, there are primary obstacles which lead to unreliable 

extraction results: complicated image scene and road model, furthermore, 

occlusions caused by buildings, trees, vegetations and their shadows.  The lack 

of sufficient topographic information about the scene, especially three-

dimensional information is the principle difficulty in obtaining the road information 

with high reliability and accuracy in urban areas. 

 

2.4 LiDAR (Light Detection and Ranging) 
 Recently, airborne LiDAR has become a rather important data source for 

generating high quality 3D topographic models. A LiDAR sensor system permits 

an aircraft flyover to quickly collect a height field for a large urban environment 

with an accuracy of centimeters in height and sub-meter in ground position.  

Multiple passes of the aircraft are merged to ensure good coverage.  Due to its 

advantages as an active sensing technique for reliable 3D determination, LiDAR 

offers a fast and effective way to acquire topographic models for a large urban 

site.  The USDOT has suggested the LiDAR technique as a new resource with 

great potential in transportation infrastructure mapping.  In fact, the USDOT and 

Caltrans have conducted many related projects to use the LiDAR technology for 

transportation.  For example, the Caltrans’ GeoResearch Group, in collaboration 

with the Department of Conservation, successfully used LiDAR technology to 

map landslides along two heavily forested highway corridors in Humboldt and Del 

Norte Counties [CADOT].  AHMCT researchers are developing a coordinated set 

of standards and specifications for the use of laser scanning in Caltrans projects 

[AHMCT].  METRANS has conducted projects of using LiDAR for generating 

terrain DEM models and for feature extraction to Caltrans databases [METR]. 

 Over the years, we have conducted a range of researches related to the 3D 

modeling, building extraction and modeling, and geospatial feature extraction and 

mapping from remote sensing imagery and LiDAR [Pou07, Pou08, Wan07, 

Hu06, Hu03].  This developed work is built on these results by extending our 

work with new capabilities to rapidly detect and extract urban road networks from 
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various sensor resources including aerial photographs, satellite images, and 

LiDAR.  We developed a novel vision-based system for automatic detection and 

extraction of complex road networks from remote sensing data. Uniquely, our 

approach merges the power of perceptual grouping theory and optimized 

segmentation techniques into a unified framework to address the challenging 

problems of road feature detection and classification.  The extensive 

experimental results show the feasibility and advantages of our approach in 

terms accuracy, confidence, completeness, and automation.  
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3. METHODOLOGY  
 

 The main efforts of our research focus on developing new techniques to 

rapidly detect, extract, and map complex road networks from high-resolution 

aerial imagery and airborne LiDAR.  A number of theoretical and experimental 

studies lead us to pursue an innovative approach that merges the power of 

perceptual grouping (tensor voting, Gabor wavelets) and classification (global 

optimization using graph-cuts) with sensor cues, geometric invariants, and 

machine learning under a unified framework to tackle these problems.  The new 

approach has the potential for automating the process of extraction and mapping 

of complex road networks from data acquired from varied data sources.  In 

addition, the same process also allows for a constrained optimal estimation of 

various terrain features and attributes including edges, curves, junctions, and 

surfaces and their relationships, thereby producing hierarchical data 

representations under a consistent framework.  Most importantly, we found that 

the process of labeling the model elements as buildings, vegetation, roads, and 

intersections is possible within this framework.   

 

3.1 System Overview 
 Figure 1 depicts the architecture of our approach and its major functions.  

Technically, the approach consists of three major components: geospatial feature 

inference and classification, road feature detection and labeling, and road 

network extraction and identification.   

 We developed a Gabor Wavelets based technique to extract the significant 

spatial and frequency information of sensor data, producing multi-channel feature 

maps (orientation and location) that clearly indicate the signatures of geospatial 

features at different spatial and frequency resolutions.  The multi-resolution 

representation is important not only for the processing of multiple sensor data 

that have varied resolutions, but also for the problem of road detection itself.  

Roads typically vary in size from narrow local lanes to wide highways.  There are 

methods that work well at one scale but fail at others.  The proposed approach 
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enables us to apply the same 

algorithm at different scales to 

extract and label a wide range of 

road types.   

 We introduced a novel 

technique called Tensor Voting 

for road feature detection and 

intersections identification.  

Tensor voting is a new perceptual 

grouping theory, motivated from a 

perceptual organization formalism 

that addresses the problems of 

structure inference from sparse or 

noisy data [Med00].  Over the 

past several years, many researchers have successfully applied the theory to 

tackle many low-level vision problems in a unified computational framework that 

implements a smoothness constraint to generate object descriptions in terms of 

surfaces, regions, curves, and labeled junctions.  The tensor voting approach can 

simultaneously capture the varying geometry elements (i.e. road surfaces, 

curves, and junctions) and their local structure information (i.e. locations, 

orientations, and confidences).   

 We employed high-level scene knowledge about roads to enhance the 

robustness and scalability of road network extraction and modeling.  Many 

existing road extraction techniques rely on low-level information such as the 

magnitude and orientation of edges to link the individual edge points.  

Smoothness constraints on local orientation are useful for road network tracking 

because roads are often straight or smoothly curved.  However, the assumption 

of intensity smoothing is not applicable to road tracking because moving 

vehicles, people, and shadows from trees or houses can produce rapid intensity 

changes.  The high-level scene knowledge about roads, such as local surface 

characteristics, topology, and spectral properties can provide powerful 

	  
Figure 1: Architecture of the proposed 
road extraction system. 
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constraints to enhance the robustness of road network tracking by resolving local 

ambiguities that occur when a region has multiple similar or overlaid features. 

The following sections detail the research advances for each component. 

 

3.2 Extraction and Classification of Geospatial Features  
 We integrate the mathematics of Gabor Wavelets and Tensor Voting to 

automatically extract the significant signatures of geospatial features at different 

spatial and frequency resolutions. 

 

3.2.1 Gabor Filtering 

 Gabor filtering theory has received considerable attention in visual 

information processing, because the characteristics of certain cells in the human 

visual cortex of some mammals can be approximated by Gabor filters.  In 

addition, the Gabor filters have been shown to posses optimal localization 

properties in both spatial and frequency domain and thus are well suited for the 

road feature extraction problems.   

 We employ a bank of Gabor filters tuned at multiple orientations and 

frequency resolutions (8-orientations and 5-frequencies) to produce multi-

channel geospatial feature maps (orientation and location) from imagery and 

LiDAR data. A two-dimensional Gabor filtering function  in space domain is 

given by: 

 

 

where  is the spatial frequency,  is the phase of the sinusoidal,  is a 

scale of the magnitude,  are scale factors for the axes,  is the peak 

coordinates and  is the rotation angle. The remaining parameters in the 

equation are computed as functions of the orientation and frequency parameters. 

 The application of the bank of Gabor filters results in a total of 40 response 

images (8 orientations x 5 frequencies).  The response images corresponding to 
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the filters having the same 

orientation and different 

frequency are added together. 

The result is a single response 

image per orientation (8), which 

is then encoded using a 

tensorial representation as 

explained in next section.  

Figure 2 shows a result of the 

Gabor filter responses to an 

urban road image. 

 

3.2.2 Tensor Voting 

 Tensor voting is a new perceptual grouping introduced by [Med00].  

Mathematically, tensors are a set of functions that encode the desired 

information of data structure.  For example, in 2D, a very salient curve element at 

a point can be represented by a thin ellipse whose major axis represents its 

tangent direction and whose length reflects its saliency of the point. The 

advantage of using a tensor representation over a vector representation is its 

powerful capacity to encode locally curved geometry as orientation and 

confidence or saliency.  Consider a simple case of a symmetric tensor with two 

perpendicular eigenvectors ,  and two corresponding real eigenvalues . 

Depending on the eigenvalues, the points  that satisfy equation  for a 

constant  give rise to three different interpretations: (i) if , the equation 

corresponds to a circle; (ii) or , all points coincide with one of the 

eigenvectors; and (iii) if and , the equation corresponds to an ellipse.  

Using the tensor voting, we can quickly infer the structure for each above case: 

locally un-oriented regions in the first case; a perfectly oriented region in the 

second case; and all the cases in between as the third case. 

 We employ the tensor calculus as a tensorial representation to encode data.  

	  

Figure 2: Use Gabor filter bank to extract 

geospatial features.  
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A point  encoded as a second order symmetric tensor is defined as: 

 

 

 

 By applying the spectrum theorem, the tensor  in above equation can be 

expressed as a linear combination of three basis tensors (ball, plate and stick): 

 

 

 In this equation,  describes a stick (surface) with associated saliency 

 and normal orientation ;  describes a plate (curve) with 

associated saliency  and tangent orientation ; and    
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Figure 3: Geometrical interpretation of tensor decomposition. (a) Tensor 

decomposition into the stick, plate and ball basis tensors in 3D. (b) Votes 
cast by a stick tensor located at the origin O. C is the center of the 
osculating circle passing through points P and O. 
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describes a ball (junction) with associated saliency  and no orientation 

preference.  The geometrical interpretation of tensor decomposition is shown in 

Figure 3 (a). 

 

3.2.3 Combining Gabor Wavelets and Tensor Voting 

 Every point in the Gabor filter response images computed previously is 

encoded using the tensor equation into a unit plate tensor (representing a curve) 

with the orientation  aligned to the filter orientation and is scaled by the 

magnitude of the response of that point.  The resulting eight tensors for each 

point are then added together which produces a single tensor per point capturing 

the local geometrical information.  To summarize, if a point  lies along a curve 

in the original image, its highest response will be at the Gabor filter with a similar 

orientation as the direction of the curve.  Encoding the eight responses of the 

point  as unit plate tensors, scaling them with the point’s response magnitudes 

and adding them together results in a tensor where , 

 and the orientation  is aligned to the direction of the curve i.e. a 

plate tensor.  Similarly a tensor representing a point that is part of a junction will 

have , i.e. a ball tensor. 

 The encoded points then cast a vote to their neighboring points inside their 

voting fields, thus propagating and refining the information they carry. The 

strength of each vote decays with increasing distance and curvature as specified 

by each point’s stick, plate and ball voting fields. The three voting fields can be 

derived directly from the saliency decay function.  Figure 3 (b) depicts 

geometrical interpretation of the voting process.  The blue arrows at point P 

indicate the two types of votes it receives from point O: (1) a second order vote 

which is a second order tensor indicating the preferred orientation at the receiver 

according to the voter, and (2) a first order vote which is a first order tensor (i.e. a 

vector) that points toward the voter along the smooth path connecting the voter 

and receiver. 

 After the tensor voting, the refined information is analyzed and used to 
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classify the points as curve or junction features.  Figure 4 shows an example of a 

mountainous area with curvy roads.  The extracted saliency map indicating the 

likelihood of each point as being part of a curve (green) and a junction (blue) is 

shown in Figure 4 (c).  The classification of the curve points based on the 

saliency map is in Figure 4 (d).  A point with is classified as a curve 

point and a point with  has been classified as a junction point. 

Intuitively, a greener point is a curve and a bluer point is a junction. 

€ 

λ3 > (λ2 − λ3)

€ 

(λ2 − λ3) > λ3

	  
 
Figure 4: Using the proposed approach to automatically extract the 

significant signatures of geospatial features. (a) Simulated polygon 
demonstrates the approach to handle discontinuities: before (left) and 
after (right) applying the tensor voting process.  (b) Original image of 
Copper Mountain area in Colorado. (c) Saliency map indicating refined 

likelihoods produced by tensor voting. (d) Classified curve features 
derived (c). Note that the processing is fully automatic, and no threshold 
parameter requires tuning. 
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 The developed approach of combining the Gabor wavelets and tensor voting 

has been proved to be very efficient in dealing with noisy, incomplete, and 

complex datasets.  It is able to not only describe unambiguously varying 

geometry elements (i.e. point, curve, junction, and surface) under a unified 

framework, but it also encodes considerably richer structure information for 

feature inference and classification.  The Gabor filters produce multi-channel 

geospatial feature maps at different spatial and frequency resolutions.  The 

tensor voting effectively captures the first-order differential geometry and its 

singularities (feature locations, orientations, and confidences).  The feature 

inference is based on a voting communication process that is governed by a 

perceptual-field, encoding the constraints and rules of how a point receives/casts 

votes from/to its neighbors.  The accumulation of votes at each point provides an 

accurate estimate of feature saliency at the point.  By combining the voting 

results for all channels, the extracted geospatial features are further classified, 

and finally converted to road vector maps (road tracks, junctions, and surfaces). 

 

3.3 Detection and Labeling Road Features  
 The above step of geospatial feature inference can extract the significant 

signatures of geospatial features and their attributes from sensor data.  However, 

these extracted geospatial features may also contain non-road features such as 

buildings, vegetations and their shadows.  A further filtering step is therefore 

needed to classify and label the road features of interest from the extracted 

geospatial feature sets.     

 Feature space clustering is currently a popular technique for feature 

extraction and classification, in which a feature vector of local properties (such as 

intensity or texture) is computed at each pixel.  The feature space is then 

clustered, and each pixel is labeled with the cluster that contains its feature 

vector.  A major limitation of this technique to separate the feature space 

clustering and pixel labeling as two independent phases is that the feature space 

clusters generally lack sufficient spatial coherence for effective pixel labeling.  A 

good cluster in feature space will often not be coherent in image space.  
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Similarly, the correct segmentation in image space may not correspond to a 

highly distinctive group of feature vectors.  The space-clustering algorithm could 

miss potential clusters which are less distinctive in feature space, but which give 

rise to spatially coherent segmentations.  Furthermore, most of current 

approaches that use only position information tend to result in poor feature 

segmentation and classification, especially when the desired features have 

similar geometry structures as their neighbors or backgrounds. 

 In this research, we developed an effective approach for road feature 

detection and labeling that operates simultaneously in feature space and in 

image space. The approach is an improved graph-cut technique that 

incorporates both the feature location and orientation information inferred by the 

tensor voting into the processes of road feature detection and labeling.  We 

define an energy function over both a set of feature clusters and a labeling of 

pixels with clusters.  In our approach, a pixel is labeled with a single cluster, 

rather than, for example, a distribution over clusters. The energy function 

penalizes clusters that are a poor fit to the data in feature space, and also 

penalizes clusters whose pixels lack spatial coherence in image space.  The 

energy function is efficiently minimized using graph-cuts technique to extract and 

label the road structures from geospatial feature sets.  

 

3.3.1 Graph-cut to Segment Road Features 

 Technically, we can treat the image feature segmentation as a graph partition 

problem.  Given an input image , an undirected graph  is created, 

where each vertex corresponds to a pixel  and each undirected edge 

represents a link between neighboring pixels .  In addition, two 

distinguished vertices called terminals ,  are added to the graph . An 

additional edge is also created connecting every pixel  and the two terminal 

vertices,  and .  For weighted graphs, every edge  has an 

associated weight .  A cut  is a partition of the vertices  of the graph 

into two disjoint sets , where  and .  The cost of each cut  is the 
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sum of the weighted edges .  The minimum cut problem can then be 

defined as finding the cut with the minimum cost which can be achieved in near 

polynomial-time. 

 The graph-cut process is performed to segment only the road features from 

the classified curve features.  The geometric structure of the curve features 

combined with color information extracted from image is used to guide an 

orientation-based segmentation using optimization by graph-cuts, which 

produces a labeling of road and non-road candidates.  

 

3.3.2 Labeling 

 The above binary case can easily be extended to a case of multiple terminal 

vertices.  We create two terminal vertices for foreground  and background  

pixels for each orientation  for which .  In our experiments, we have 

found that choosing the number of orientation labels in the range  

generates the best results.  Thus the set of labels  is defined to be 

 with size . 

 

3.3.3 Energy Minimization Function  
 Finding the minimum cut of a graph is equivalent to finding an optimal 

labeling , which assigns a label  to each pixel , where  is 

piecewise smooth and consistent with the original data.  Thus, our energy 

function for the graph-cut minimization is given by: 

 

 

where  is the weight of the smoothness term. 

 

 Energy data term: the data term provides a per-pixel measure of how 

appropriate a label  is, for a pixel  in the observed data and is given by: 
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 The initial seed points are used twice. Firstly, we use the seeds to compute 

an intensity distribution (in our case of color distribution, using the Gaussian 

mixture models) for the background and foreground pixels.  A measure of how 

appropriate a labeling is, is then given by computing the negative log-likelihood 

i.e. . Secondly, we used the seeds to encode the hard constraints 

for the segmentation.  Foreground and background pixels are assigned the 

lowest and highest value of the function , respectively.  For all other 

pixels, is computed as: 

 

 

Thus, the energy data term then becomes: 

 

 

 Energy smoothness term: the smoothness term provides a measure of the 

difference between two neighboring pixels  with labels  

respectively.  Let and  be the intensity values in the observed data of the 

pixels respectively.  Similarly, let and  be the initial orientations for the two 

pixels recovered as explained in Section 3.2.2. We define a measure of the 

observed smoothness between pixels  as: 

 

 

 In addition, we define a measure of smoothness for the global minimization.  
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Let  and 	  be the intensity values under a labeling .  Similarly, let  

and  be the orientations under the same labeling.  We define a measure of 

the smoothness between neighboring pixels under a labeling  as: 

 

 

 Using the smoothness measure defined for the observed data and the 

smoothness measure defined for any given labeling, we can finally define the 

energy smoothness term as follows: 

 

 

 

 

where  is the set of neighboring pixels, , and  controls the 

smoothness uncertainty. Intuitively, if two neighboring pixels have similar 

intensity and similar orientation in the observed data, then  will be small and 

thus there is a high probability of  being small.  To summarize, the function 

 penalizes heavily for severed edges between neighboring pixels with 

similar intensity and orientation, and vice versa. 
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 An advantage of the developed orientation-based segmentation is that by 

incorporating orientation information in the optimization process, it ensures that 

linear segments are not severed, even in the case where the color difference 

between neighboring pixels is relatively significant.  By using the classified curve 

features to guide the segmentation process, we combine the fast computational 

times of graph-cuts and the high-accuracy of the information derived using the 

perceptual grouping to produce results with better defined boundaries compared 

to traditional segmentation techniques, as shown in Figure 5. 

 

3.4. Extraction of Road Network and Identification of 
Intersections 
 Once detected road features, we extract complete road network and their 

attributes (road widths, centerlines, and road intersections), and convert them to 

road vector representations.   

 We developed a knowledge-based technique to enhance the robustness and 

scalability of road network extraction and modeling.  A bi-modal Gaussian model 

is used to model the road segments and to extract road widths and centerlines.  

	  
 
Figure 5: Comparison between the traditional intensity-based segmentation 
approach and the developed orientation-based technique. (a) Original 

image. (b) Intensity-based segmentation. (c) Orientation-based 
segmentation. (d) Color-coded segmentation difference (Red: common 
points, Green: only in intensity segmentation, Blue: only in orientation 
segmentation). 
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The road widths are estimated by detecting two road-side points with the bi-

modal Gaussian filter (i.e. road-side filter).  In addition, a single mode Gaussian 

road-area filter is also applied to the labeled road feature sets to ensure that the 

feature points having the maximum responses to the road-side filter are indeed a 

part of road segments.   

 

3.4.1 Road Centerline Extraction and Linearization 

 The extraction of the road centerlines is performed using a set of Gaussian-

based filters.  A bi-modal filter is employed to detect parallel-lines and is defined 

as a mixture of Gaussian kernels given by: 

 

 

 

where there  subscript stands for a rotation operation such that 

 

 

 

 

where  is the orientation of the filter and  is the distance between the peaks. 

The bi-modal filter is shown in Figure 6 (a). 

 The bi-modal filters of different orientations  and widths  are applied to 

the classified curve features computed previously as explained in Section 3.3. In 
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curve pixels along the filters’ peaks, the orientation information is used to weigh 

the response.  This ensures that the maximum response only occurs when both 

pixels have the same orientation and are aligned to the filter’s orientation.  Figure 

6 (b) demonstrates the application of a bi-modal filter to a point . The 

orientations  and  of the left and right road side points  and  

respectively are used to scale the response.  Thus, the above Gaussian kernel 

equation becomes 

 

 

 In addition to the bi-modal filters, single mode Gaussian filters are applied to 

the segmented binary image containing the road candidates.  This ensures that 

the area between any parallel lines is indeed a part of the road and therefore 

should appear in the result of the segmentation.   

 Single mode and bi-modal filters of different widths and orientations are 
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Figure 6: Bi-modal Gaussian model used for extracting road widths and 

centerlines. (a) The bi-modal filter 

€ 

Gb  is applied to the classified curve 

features. (b) Red arrows: filter orientation (at peaks). Black arrows: actual 
pixel orientation. 
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combined as  and are used for the extraction of centerline 

information.  A point along the centerline of a road of orientation  and width  

will have a maximum response to a filter with the same or similar orientation and 

width.  Thus, for each pixel we record the filter parameters (orientation, width) for 

which it returns a maximum response. 

 Finally, the centerline response magnitudes are used as votes in an iterative 

Hough transform.  This has the significant advantage that no input parameters 

are required for the Hough transform, such as number of peaks, minimum vote 

thresholds, etc. therefore making the linearization process entirely automatic. 

The result is a set of lines representing the segments of the road network as 

shown in the examples of Figure 7 and Figure 8.  The majority of the centerlines 

are correctly extracted automatically.  However, some false positives still exist, 

which needs following road tracking process. 
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(a)                                                            (b) 

Figure 7: Automatic extraction of road network and attributes including 

road widths (green), centerlines (yellow), and road intersections (blue) for 
the Oregon dataset. (a) The response magnitude map computed by the 
Gaussian filters is used for the voting of Hough transform.  (b) The 
majority of road network and attributes are automatically extracted. 
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Figure 8: Automatic extraction of road network from high-resolution 
satellite image of an urban site (Kentucky dataset).  The marked areas in 
(d) show the miss-detected roads due to occlusions and shadows.  
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3.4.2 Detection Road Intersections 

 Road intersections are extracted by using a model-based approach applied 

to the geospatial feature sets detected by tensor voting.  As stated above, the 

tensor voting is able to not only estimate feature saliency, but it can also identify 

unambiguously the types of varying geometry elements such as point, curve, 

junction, and surface.  The detected geospatial features represented as tensorial 

representation encode richer structure information for possible intersection 

features together with associated confidence/uncertainty measures.  This leads 

us a natural way to merge the power of the tensorial representation with model-

based approach to solve the problem of road intersection detection. 

 We establish road intersection models based on the road geometric 

characteristics.  Each road segment is represented as an elongate rectangle that 

has constant width and length.  The center position of junction is defined as a 

road intersection where two or more roads segments either meet or cross at 

grade.  Under this definition, we classify the road intersections as three basic 

types: crossroads: representing the intersection of two road portions, T-

intersections: consisting of one straight road and connected branch, and three-

forked roads: having three road segments where each branch has different 

direction (Figure 9).  Any complex intersection can be modeled as a combination 

of the three basic models. 

	  
	  
Figure 9: Basic road intersection models used for detecting road 
intersections.  Any complex intersection can be modeled as a 

combination of the three basic models.  
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 Once defined, the road intersection models are matched to those possible 

junction points detected by tensor voting.  The matching measure is based on the 

saliency measure encoded in the feature’s tensorial representation, including 

orientation, confidence, and junction type.  A point having a maximum match 

score to the road intersection models is identified as a road intersection.  Figures 

7, 8 show the results of extracted road network and its attributes including road 

widths, centerlines, and intersections. 

 

3.4.3 Road Tracking and Network Completion 

 Using the automatically extracted width and orientation information computed 

by the filters, a tracking algorithm converts the linear segments into their 

equivalent polygonal representations i.e. road segments.  In some cases where 

the road network is particularly complex, the automatically extracted linear 

segments may contain false positives and false negatives. For such cases, we 

developed an interactive approach for the further refinement, which can have the 

form of several actions outlined below. 

 

1. Adding a seed point: Once a seed point is added the filters are applied to 

derive the width and orientation information. The system then recursively 

performs a local neighborhood search to find a candidate pixel that minimizes the 

function: 

 

where   is the Euclidian distance between the candidate and the seed point, 

 is the orientation difference,  is the width difference, and  are 

weights corresponding to each term, respectively. The weights are 

experimentally determined.  In all of our experiments, their values are defined as 

constants: .  This process is recursively repeated and 

each candidate point that minimizes  is added to the current line until no 

more neighboring points are found.   
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2. Adding or editing a centerline: Once a centerline is added the filters are 

applied at a fixed orientation aligned to the specified centerline’s slope. 

 

3. Merging of two centerlines. Given two centerlines a Hermite spline is fit 

between the most appropriate endpoints resulting in a single merged centerline. 

 

4. Deleting a centerline: delete the road centerline and all the associated points. 

 

5. Smoothing. The centerline vector is converted to dense points. A snake is 

then used to refine the spatial position of those points using the centerline 

magnitude map as an external force. 

 

6. Approximation/Point reduction: A centerline consisting of dense points is 

approximated using Iterative End-Point Fit, thus reducing the number of points. 

 

 Finally, a set of polygonal Boolean operations is applied to the road 

segments, resulting in a polygonal representation of the entire road network. 

Figures 10, 11 show the results of applying the approach to process an airborne 

LiDAR data (a section of Baltimore downtown area) and aerial imagery (a section 

of Las Vegas downtown area).  
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(a) LiDAR intensity data                       (b) LiDAR depth data 

 

 
(c) Detected road areas                       (d) Extracted road network 

 

Figure 10: Apply the approach to process an airborne LiDAR data (a 
section of Baltimore downtown area).  The blue and red points in (a) are 
the seed points used to indicate background and foreground objects.  
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(a)                                                        (b)  

 
(c)                                                             (d) 

Figure 11: Apply the approach to process an aerial imagery (a section of 
Las Vegas downtown area). (a) Detected road areas, (b) extracted road 
centerline areas (only the magnitude is shown), (c) extracted road 
network and attributes, and (d) polygonal representation of the extracted 

road network. 
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4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

 

 We implemented the road extraction system and extensively evaluated its 

performance with various datasets acquired by different remote sensors, 

including aerial photographs, satellite images and airborne LiDAR.  The datasets 

cover various urban, suburban and rural scenes with various road and imaging 

conditions.  Our research efforts are to assess, define, and use the unique spatial 

and spectral characteristics of the advanced sensor techniques for rapid road 

feature extraction and road quality mapping.    

 

4.1. Algorithm and System Implementation 

 We implemented two versions of the algorithms and systems on Microsoft 

Windows and Linux platforms. In the first step, we developed the core algorithms 

and constructed an experimental system on Linux platform because the Linux 

has the capability to directly handle large size data on system memory. Upon 

success, we then transferred the developed algorithms to Windows platform.  We 

employed several advanced memory management and database techniques 

such as page memory, tree data structure to optimize the system’s capability to 

process large datasets on COTS hardware platform.   

 The developed system comprises following main modules: 

 Data acquisition: accessing the data input to the system. The system 

supports multiple data sources in many standard formats, including optical color  

and grey images, LiDAR point clouds, and LiDAR intensity maps. 

 Data pre-processing: performing necessary data conversion and data 

processing tasks required by the core algorithm processing. 

 Road extraction: performing main tasks of geospatial feature detection, road 

extraction and road network completion. 

 Post-processing: providing useful tools for verification and refinement of the 

processed results. 

 

4.2. Experimental Data Collections 
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 We collected a number of testing datasets of designated sites.  The datasets 

covers various urban suburban, and rural terrain scenes and conditions acquired 

by aerial imagery and LiDAR sensors, including the areas of USC campus and 

surround areas, Los Angeles downtown, San Diego, San Francisco, Denver, and 

Baltimore downtown. We used those datasets to evaluate our developed road 

extraction technique.  The results are shown in next section. 

  

4.3. Performance Evaluation and Results 

 We extensively evaluated the developed road extraction techniques with 

various collected datasets.  We first tested the performance of every individual 

algorithm step-by-step on urban and rural terrains using both high-quality and 

lower-quality sparse/noisy imagery and LiDAR datasets.  We then evaluated the 

performance of overall system that integrates all the individual algorithms into an 

overall architecture. 

 

4.3.1 Individual Algorithm Evaluations 

 The three main components are tested individually with the collected imagery 

and LiDAR datasets: geospatial feature inference and classification, road feature 

detection and labeling, and road network extraction and identification. 

 The input to the system is the original data that could be optical images, 

LiDAR 3D point clouds, LiDAR intensity maps or their combinations.  Once the 

data is loaded, the system automatically identifies the data type, preprocesses 

the data, executes core processes of road extraction, and output the results. The 

system also provides a toolbox that allows users to post-process the results or 

verify and refine existing roads to provide update road network maps.  

 Depending on the input data type, the system needs to perform necessary 

preprocessing step such as data conversion, noise filtering, contrast and 

illumination enhancements, and segment operations (select, copy, cut, past, 

delete).   Our system treats all the data (whether they are LiDAR 3D point clouds 

or imagery) as 2D image data to process.  The raw LiDAR point cloud data are 

converted to 2D depth images by hole-filling, noise filtering, and grid re-sampling.  
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Figure 12 shows a raw LiDAR point cloud data of USC campus area and its 2D 

depth image by the data preprocessing.  

 Once the input data is pre-processed, the system executes core processes 

that include detecting and extracting geospatial features, segmenting and 

labeling road features, and extracting complete road network and their attributes.  

Two types of results are generated:  road segments map that shows all the 

extracted roads with segments and their attributes (road widths, centerlines, and 

road intersections) (Figure 13b), and road connection map that shows the 

connected road networks and their attributes (Figure 13c).  The system allows 

user to select the output format and individual road attribute.  All the output 

results are in vector representation, which we believe is important for further 

integration of the road extraction system and results into a general geospatial 

system and infrastructure database that include various geospatial elements 

such as 3D terrain models, buildings, vegetations, and transportation networks. 

 As stated above, our approach uniquely combines the Gabor wavelets and 

tensor voting to extract the significant signatures of geospatial features. The 

experiments have proved that the approach is very efficient in dealing with noisy, 

incomplete, and complex urban scenes.  It is able to not only find unambiguously 

	  
Figure 12: LiDAR data acquired for USC campus: (left) raw 3D LiDAR point 

cloud data, and (right) produced 2D depth image after hole-filling, noise 
filtering, and grid re-sampling. 
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varying geometry elements (i.e. point, curve, junction, and surface) under a 

unified framework, but it also encodes considerably richer structure information 

for feature inference and classification.  The Gabor filters produce multi-channel 

geospatial feature maps at different spatial and frequency resolutions.  The 

tensor voting effectively captures the first-order differential geometry and its 

singularities (feature locations, orientations, and confidences).  The feature 

inference is based on a tensor voting communication process that is governed by 

a perceptual-field, encoding the constraints and rules of how a features 

receives/casts votes from/to its neighbors. By combining the voting results for all 

channels, the extracted geospatial features could be effectively classified and 

labelled (road tracks, junctions, and surfaces).  Further the approach has no data 

dependencies, eliminating the need of threshold tuning and adjustment.  Figure 

16 shows a result of applying the approach to a rural terrain scene acquired by 

satellite imaging sensor, where the geospatial features have varying geometric 

(buildings, junctions, linear and curve roads) and radiometric (noise, material 

reflection, and contrast) properties.  The results we obtained with the unique 

integration of perceptual grouping (tensor voting, Gabor wavelets) and geospatial 

data processing are clearly more complete road extractions than with prior 

methods and the approach provides a natural framework for fusing multiple data 

sources and features. 

 The above step of geospatial feature inference can extract the significant 

signatures of geospatial features and their attributes from sensor data.  However, 

these extracted geospatial features may also contain non-road features such as 

buildings, vegetations and their shadows.  A further filtering step is therefore 

needed to classify and label the interested road features from the extracted 

geospatial feature sets. 

 We tested the effectiveness of our graph-cut based technique to segment 

and label the road features.  The approach is an improved graph-cut technique 

that incorporates both the feature location and orientation information inferred by 

the tensor voting into the processes of road feature detection and labeling. It 

overcomes the problems of traditional pixel-based approach that can effectively 
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segment the road features and label them in feature space and image space 

simultaneously.  Figure 17 shows a result of applying the approach to an aerial 

image to extract the rural roads.  Figure 18 is the result of applying the approach 

to a complicated urban scene (Baltimore downtown) acquired by LiDAR sensor, 

where the scene contains varying geospatial features and objects such as 

buildings, vegetations, parking lots, local streets, and highway roads.  The low 

contrasts, varying shadows, and homogenous surface reflections contained in 

this scene make it extremely difficult to apply the pixel-based approach.  

 

4.3.2 Overall System Evaluations 

 We evaluated the overall system performance that integrates all the 

individual algorithms and modules into an overall architecture.  The system 

architecture was conceived and used as a framework for integration of the 

algorithms and modules. Initial usability and interface enhancements were 

designed, implemented, and evaluated.   

 Tests were performed on a number of datasets for designated sites 

including, Los Angeles downtown, San Diego, San Francisco, Denver, Oregon, 

Kentucky, Las Vegas, and Baltimore downtown areas.  The sample results are 

shown in Figure 13 – 26. Note that all the output results are in vector 

representation.  We believe that using vectors to represent the road networks is 

important for further integration of the road extraction system and results to a 

general geospatial system and database that include various geospatial 

elements of 3D terrain models, buildings, vegetations, and transportation 

networks. Figure 26 shows the example of merging the extracted road network 

with 3D building models under a consistent framework. 

      Quantitative evaluations were conducted using the evaluation metrics 

introduced in [Wie99], in terms of completeness, correctness and quality. 

- Completeness. The completeness is defined as the ratio of true 

positives from the sum of the true positives and false negatives given by: 
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- Correctness. The correctness is defined as the ratio of true positives 

from the sum of the true and false positives given by: 

 

 
 
 

-  Quality. The quality is a measure of the ``goodness'' of the final result, 
and is given by: 

 

 
 
 
 Table 1 lists evaluation results using above metrics for the datasets of 

Oregon, Kentucky and Las Vegas.  It is shown that the system performs very well 

in terms of completeness, correctness and quality for the rural and urban areas.  

 It is worth to mention that the overall system performance primarily depends 

on the performance of the low-level grouping and mid-level segmentation 

processes.  The grouping and segmentation are the two essential components 

that can drastically affect the outcome. The use of tensor voting framework 

significantly improves the grouping results, since it eliminates any ‘‘guessing’’ 

(i.e. using thresholds) when deciding the neighboring features.  

 

Table 1: Quantitative performance evaluations  

Dataset Completeness (%) Correctness (%) Quality (%) 

Oregon (Figure 7) 82 80 68.6 

Kentucky (Figure 8) 86 75.5 67.3 

Baltimore (Figure 10) 83 66 58.8 

Las Vegas (Figure 11) 71.4 80 60.6 



	  
 

 

5. CONCLUSIONS AND RECOMMENDATIONS  
 

 The research efforts of this project are to develop new approach and 

technique to assess, define, and use the unique spatial and spectral 

characteristics of advanced remote sensor techniques from aerial imagery and 

LiDAR for automated road extraction and road quality mapping.  The methods 

developed and tested in this research have shown the ability to extract road 

features from a wide range of terrain.  Urban and rural areas with wide and 

narrow roads and highways are successfully extracted, as are dirt or gravel 

roads. Road attributes including road widths, centerlines, intersections and 

overpasses are estimated.  

 We focused on the development and testing of new algorithms based on new 

mathematical frameworks for road feature segmentation, detection, road tracking 

and verification/assessment. Specifically, we explored the integrated use of 

perceptual grouping (Gabor wavelets and Tensor Voting) with sensor cues, 

geometric invariants, and machine learning under a unified framework to tackle 

the problems, which has not been used for this application before.  This proved 

to be a very important component of our techniques and overall technical 

approach.  The results we obtained with the unique technique are clearly more 

complete road extractions than with prior methods.  Our technique provides a 

natural framework for fusing multiple data sources and features.  

 This new technique has demonstrated the potential for automating the 

extraction and mapping of complex road networks from advanced remote 

sensing data.  In addition, the same process also allows for a constrained optimal 

estimation of various terrain features and attributes, thereby producing 

hierarchical data representations under a consistent framework. Most 

importantly, we believe that the process of classifying and labeling the important 

geospatial elements such as buildings, vegetation, terrains, and transportation 

networks is possible within this framework.   

 The technique has been implemented and extensively tested on urban, 

suburban, and rural terrains using both high-quality and lower-quality 



	  
 

 

sparse/noisy imagery and LiDAR data.  The algorithms and modules were 

integrated into an overall architecture that has several important features: 

• the ability to fuse multiple data sources in many standard formats, including 

optical images, LiDAR 3D point clouds, LiDAR intensity maps and their 

combinations. 

• the ability to operate independently on subregions of the data and to merge 

all results. 

• the ability to apply multiple operator options suited for various data and 

terrain characteristics. 

• the ability to store and load interim processing results. Processing errors, 

manual errors, or system failures do not cause loss of prior step results. 

• the ability to process data automatically. If needed, the results can been 

further refined or corrected with the developed editing tools. 

• the ability to process large data sets using standard platforms (MS Windows 

and Linux) and benefiting from their CPU, memory, and graphics 

performance improvement curves. 

 

 Technical literatures are collected and analyzed to determine the research 

direction and relevant technologies essential for this research.  

 A large number of imagery and LiDAR datasets have been collected for 

algorithm development and evaluation. Tests were performed on the datasets for 

designated sites including, Los Angeles downtown, San Diego, San Francisco, 

Denver, Oregon, Kentucky, Las Vegas, and Baltimore downtown areas. The 

datasets and tests are the most extensive in this research area, to the best of our 

knowledge. 

 The new findings resulting from the research have been documented and 

published in peer-referred journal and international conference including: 

- “Delineation and Geometric Modeling of Road Networks,” ISPRS Journal 

of Photogrammetry and Remote Sensing, Elsevier, 2009 (in press) 

- “A Vision-based System for Automatic Detection and Extraction of Road 

Networks,” IEEE Workshop on Applications of Computer Vision (WACV), 



	  
 

 

2008, Copper Mountain, Colorado 

 Two students (one Ph.D. student and one Master student) worked on this 

project and graduated.  This project offers a significant opportunity to engage the 

students in transportation research activities. The METRANS needs and 

applications are excellent driving problems that focus the research efforts on 

producing tangible results, helping the students understand the need for balance 

and coordination in pursuing intellectual ideas and producing tangible results.  

 

 In summary, this project has demonstrated, based on our research efforts 

and results, that using advanced remote sensors combining with advanced 

computer vision technology for rapid extraction of complete road networks is 

efficient.  Remote sensing techniques such as measures from aerial imagery and 

LiDAR provides one effective means by which large-area topographic models 

can be rapidly mapped with a high standard of accuracy.  Advanced computer 

vision theory and approach offer powerful tools to process such data, having 

advantages in terms of accuracy, confidence, completeness, and automation. 

 The research, development, and testing indicate that the our approach is 

sound, the risk of moving forward with development of a complete end-to-end 

prototype application is low, and the opportunity for impacting the current state of 

commercial products and markets is there. In addition, extension of the 

developed approach to extract other related transportation networks, such as 

rivers, waterways, bridges, and rail lines could be pursued. 
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Figure 13: Experimental results of southern portion of USC dataset: (a) 
extracted road centerlines, (b) extracted roads segments and their 
attributes (road widths, centerlines, and road intersections), and (c) 

complete road connection network and attributes.  
 

  
Figure 14: Experimental results of northern portion of USC dataset: (left) 
extracted road segments map, and (b) complete road connection map. 

 



	  
 

 

 
Figure 15: Extracted road network of entire USC campus and surround areas. 

 



	  
 

 

 
 (a) 

 
(b) 

 
(c) 

Figure 16: Robustness test: using the hybrid Gabor-Tensor Voting 
approach to extract the significant signatures of road features having 
varying geometric and radiometric properties. (a) Original data acquired by 
satellite imaging sensor, (b) saliency map indicating the feature likelihoods 

captured by Gabor-Tensor Voting, and (c) inferred road features with 
confidences.  Note that the processing is fully automatic, and there is no 
threshold parameter that requires tuning. 



	  
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 17: Robustness test: using an improved graph-cut technique to 
segment and label the dirt and gravel roads in rural scene. (a) Original 
aerial image, (b) segmented and labeled road features, and (c) extracted 
roads overlaid on the original image. 



	  
 

 

 

 
(a) 

 
(b) 

Figure 18: Robustness test: using an improved graph-cut technique to 
segment and label a urban scene acquired by LiDAR sensor. (a) Segmented 
and labeled road features, and (b) extracted roads overlaid on the original 

image. 



	  
 

 

 

 
Figure 19: Extracted road network of Los Angeles downtown areas using 
aerial images. 



	  
 

 

 
Figure 20: Extracted road of portion of San Francisco areas using aerial 
images. 



	  
 

 

 
Figure 21: Extracted road network of San Francisco areas using aerial 
images. 



	  
 

 

 
Figure 22: Extracted roads of portion of San Diego areas using aerial 
images. 



	  
 

 

 
 

Figure 23: Extracted road 
network of portion of Denver 
areas using aerial images. 



	  
 

 

 
(a) 

 
Figure 24: (a) Extracted roads of portion of Baltimore downtown from 
LiDAR, and (b) road attributes (widths, centerlines, and intersections).  



	  
 

 

 
Figure 25: Polygonal representation of the extracted road network 

(Baltimore downtown) is useful for integration of the road extraction 
system and results to a general geospatial system and database. 



	  
 

 

	  

Figure 26: Integaring the extracted road network of Figure 22 to a general 

geospatial system and database that include various geospatial elements of 
3D buildings models and road transportation models. 
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